METADATA FOR NASA GODDARD'S LIDAR, HYPERSPECTRAL AND THERMAL (G-LiHT) AIRBORNE IMAGER
CONTENTS

1) Contact information
2) Campaign description
3) Flight plans
4) Acquisition details
5) Field observations
6) Output file name(s)
7) Data products
8) Instrument specifications
9) Publications
10) CONTACT INFORMATION

Bruce Cook, G-LiHT PI: bruce.cook@gsfc.nasa.gov, 301.614.6689
Larry Corp, G-LiHT Scientist: lawrence.a.corp@nasa.gov, 301.614.6619
Address: NASA Goddard Space Flight Center
Biospheric Sciences Laboratory, Mail Code 618
8800 Greenbelt Rd
Greenbelt, MD, 20771
Website: http://gliht.gsfc.nasa.gov
2) CAMPAIGN INFORMATION

Date(s): May 6-7 2015
Time of day: see ancillary file for acquisition time
Location: Knoxville TN
Description: Remote detection of human remains
Research project: University of Tennessee, Anthropology Dept.
Funding source: DOD
3) FLIGHT PLANS

Intersecting series of flight lines over the Knoxville, TN body farm experiment site. Mapping transects over Stanton and Woodlawn Cemeteries. Calibration data collected over Downtown Island Airport runway. Shiloh \& Taylor sites also flown
4) ACQUISITION DETAILS

Aircraft: Piper Cherokee, 934PH
Pilot: Thaddeus Ficke1, Infrared Barron LLC
G-LiHT operator(s): Larry Corp NASA GSFC
Nominal altitude (AGL) : 305 m \& 152 m AGL
Nominal velocity: $110-150 \mathrm{kt}$
Other:
5) FIELD OBSERVATIONS

Weather: see ancillary file for cloud score
Other notes: VFR
6) OUTPUT FILE NAME(S)

Jackson_6May2015
Savannah_6May2015
Shiloh_6May2015_area
Shiloh_6May2015_low_altitude
Taylor_6May2015
Taylor_6May2015_1ow_altitude
UTK_7May2015
UTK_7May2015_dawn
UTK_7May2015_dusk_1ow_altitude
UTK_7May2015_1ow_altitude
UTK_07May2015_runway
UTK_7May2015_Stanton
UTK_7May2015_Woodlawn
7) DATA PRODUCTS

GPS-INS
Trajectory: Aircraft location and orientation (roll, pitch, yaw). Available as 3D Google Earth overlay (KML) and 250 Hz data product (ASCII).

Canopy Height Mode1: Lidar-derived maximum canopy height (m AGL) and canopy rugosity (i.e., standard deviation of heights within an area equivalent to a $1 / 24$ ac USFS-FIA subplot). Available as Google Earth overlay (KML) and raster data product (GeoTIFF) at a nominal 1 m spatial resolution.

Digital Terrain Mode1: Lidar-derived bare earth elevation (m, EGM96 geoid), aspect and slope. Available as Google Earth overlay (KML) and raster data product (GeoTIFF) at a nominal 1 m spatial resolution.

Lidar Apparent Reflectance: Mean reflectance for all, single returns from a 1550 nm laser. The lidar is factory calibrated and data corrected for ranging distance, but not scan angle or atmospheric interactions. Available as raster data product (GeoTIFF) at a nominal 1 m spatial resolution.

Lidar Point Cloud: Individual lidar return data, including 3D coordinates; classified ground returns ("Classification" field); AGL heights ("Point Source ID Text" field, using z scale factor and offsets) ; and lidar apparent reflectance ("Intensity" field; -25 to 0 dB for 2 byte range). Overlapping swaths are co-aligned with coincident ground returns to remove swath-toswath elevation biases. Available in ASPRS LAS 1.1 format.

Lidar Metrics: Common lidar height, density, fractional cover and return statistics (e.g., mean pulse density, returns per pulse) for all returns +/- 15 degrees of nadir. Available as raster data product (GeoTIFF) at a nominal 13 m spatial resolution (area equivalent to a $1 / 24$ ac USFS-FIA subplot).

Image Spectrometer
A11 VNIR (418 to $918 \mathrm{~nm}, 4.5 \mathrm{~nm}$ sampling interval) data products are available as
orthorectified raster files (ENVI file format) at a nominal 1 m spatial resolution; Google Earth overlays (KML) are available for the NIR band.

Radiance: Calibrated radiance data is provided for individual swaths in radiometric units (W $\mathrm{m} \wedge-2 \mathrm{sr} \mathrm{\wedge}-1 \mathrm{~nm} \wedge-1$).

At-sensor reflectance: Computed as the ratio between observed upwelling radiance and downwelling hemispheric irradiance; corrected for differences in cross-track illumination and BRDF using an empirically derived multiplier. At a nominal flying height of 335 m AGL, the at-sensor reflectance is a close approximation of surface reflectance. Available for individual swaths, and mosaicked for mapped areas using swath observations closest to nadir.

Vegetation indices: Computed from at-sensor reflectance data. These products are used as indicators of canopy properties and condition (e.g., greenness, pigment concentrations).

Ancillary data: Contains acquisition time, aircraft location, sun-sensor geometry, incoming PAR, clearness index, swath ID, and flag indicating nearest neighbor resampling during georegistration.

Thermal
Radiant temperature: Computed with 0.98 emissivity and no atmospheric or view angle correction. Available as Google Earth overlay (KML) and raster data product (GeoTIFF) at a nominal 1 m spatial resolution.
8) INSTRUMENT SPECIFICATIONS

GPS-INS
Mode1/Make: RT-4041, GPS and GLONAS enabled; Oxford Technical Solutions, Oxfordshire, UK Serial number: 663
Sampling interval: 250 Hz
Differential correction: OmniStar HP or G2
Positional accuracy (1 sigma): 10 to 15 cm horizontal (vertical=horizontal*1.5)
Yaw accuracy (1 sigma): 0.1 degree
Roll accuracy (1 sigma): 0.03 degree
Pitch accuracy (1 sigma): 0.03 degree
Antenna: Antcom G5Ant-42AT1 L1/L2 Glonas/GPS/OmniStar
Post-Processing software: RT Post-Process
Scanning lidar
Mode1/Make: VQ-480; Rieg1 Laser Measurement Systems, Horn, Austria
Serial number: S9997785
Laser wavelength: 1550 nm

```
    Pulse width: 3 ns
    Pulse energy: 2817 nJ in 25 mm
    Beam divergence: 0.3 mrad
    Nominal footprint size: diameter = tan(beam divergence/2)*altitude*2
    Laser pulse repetition frequency (PRF): 300 kHz
    Effective measurement frequency: 0.5*PRF
    Maximum number of returns per pulse: 8
    Field of view: 60 degrees (+/- 30 degrees of nadir)
    Scan mode: line
    Scan rate: 100 lines per second
    Nominal distance between points in a scan line: 0.21 m @ 305 m AGL, 0.11 m @ 152 m AGL
    Nominal distance between scan lines: 0.56 m
    Swath size: width = tan(FOV/2)*altitude*2
    Lever arm (ahead, left, above; date): 0.329, 0.142, 0.977 m (07 July 2014)
    Boresight (rol1, pitch, yaw; date): -0.15543, -0.07890, -0.23791 degrees (07 March 2015)
    Post-Processing software: RiProcess
Profiling lidar: none
Digital SLR:
    Camera: Nikon D7100
    Lens: 20mm f/2.8D lens w/circular polarizer
    FOV: }60.7\times42.6 degre
    Image area and size: DX, 6000 x 4000 = 24 megapixe1
    Shutter speed: 1/250 s, EV -1.3
    Aperture: f/2.8
    ISO: 100
    Focus: manual, infinity
    White balance: sunlight
    Frame rate: 4 s
    Image format: jpg
    Quantization: 8-bit
Imaging spectrometer
    Mode1/Make: Hyperspec mode1 1002A-00451; Headwal1 Photonics, Fitchburg, MA
    Serial Number: G4-105
    Camera: Adimec mode1 RA1000m/D_DFG
    Serial Number: 830016
    Focal plane array: pushbroom, 1004 cross track pixels
    Frame rate: 50 Hz
    Lens/FOV: 8 mm lens, f/2; ~50 degree
    Sensor size: 7.4 mm
    Integration time: 20 msecs
    Sensor range: 417-1008 nm
    Spectral band width (FWHM): ~8 to 15 nm
    Sampling resolution: 1.5 nm (401 bands)
    Resampled resolution: 418 to 919 nm in 4.5 nm bands (114 bands)
    Quantization: 12 bit
Thermal camera
    Mode1/Make: Gobi-384; Xenics, Leuven, Belgium
    Seria1 number: GOBI-1413
    Sensor: Uncooled microbolometer
    Focal plane array: 384 x 288 on 25 um pixels
    Data output: degrees Celsius
    Frame rate: 25 Hz
    Sensitivity: 8 to 14 um
    Quantization: 16 bit
Downwelling irradiance
    Mode1/Make: USB-4000; Ocean Optics, Dunedin, FL
    Serial number: USB4H02819
    FOV: 180 degrees (cosine diffusor)
    Integration time: 33 ms
    Sample averaging: 30
    Sampling interval: 0.6 nm
    Sensor range: 380-1100 nm
```

FWHM: 1.5 nm
Resampled resolution: 418 to 919 nm in 4.5 nm bands (114 bands)
Quantization: 16 bit
9) PUBLICATIONS

Cook, B. D., L. W. Corp, R. F. Nelson, E. M. Middleton, D. C. Morton, J. T. McCorke1, J. G. Masek, K. J. Ranson, and V. Ly. 2013. NASA Goddard's Lidar, Hyperspectral and Thermal (G-LiHT) airborne imager. Remote Sensing 5:4045-4066, doi:10.3390/rs5084045.

