G-LiHT Plot-Scale LiDAR Metrics

Last Revised 12 November 2020

RETURNS	TAG	DESCRIPTION	UNITS
All	all_d0all_d9	Density deciles (10% increments) of all returns	Fraction
	all_kurt	Kurtosis of all return heights	meters
	all_mean	Mean of all return heights	meters
	all_p10all_p100	Height percentiles (10% increments) of all returns [3]	meters
	all_qmean	Quadratic mean of all return heights	meters
	all_refl_max	Maximum relative reflectance of <i>all</i> single returns	fraction
	all_refl_mean	Mean relative reflectance of <i>all</i> single returns	fraction
	all_skew	Skewness of all return heights	meters
	all_stdev	Standard deviation of all return heights	meters
	chm_mean	Mean canopy height from 1m CHM	meters
	chm_rugosity	Standard deviation of canopy height from 1 m CHM	meters
	dsm_mean	Mean canopy elevation from 1 m DSM (DTM+CHM)	meters
	dsm_rugosity	Standard deviation of canopy elevation from 1 m DSM	meters
	pulse_density	Laser pulse density	pulses m ⁻²
	pulse_scan_angle	Mean laser pulse scan angle (from nadir)	degrees
	returns_per_pulse	Mean number of returns per laser pulse	counts
Shrub	shrub_mean	Mean of <i>shrub</i> return heights	meters
	shrub_refl_max	Maximum relative reflectance of <i>shrub</i> single returns	fraction
	shrub_refl_mean	Mean relative reflectance of <i>shrub</i> single returns	fraction
	shrub_stdev	Standard deviation of <i>shrub</i> return heights	meters
Tree	tree_aad	Mean Absolute Deviation [1]; (AAD = mean(height -	meters
		mean height) of <i>tree</i> returns	
	tree_crr	Canopy Relief Ratio [1,2]; (CRR = mean-min:max-min)	unitless
		of tree returns	c
	tree_d0tree_d9	Density deciles (10% increments) of <i>tree</i> returns	fraction
	tree_fcover	Fraction of first returns intercepted by tree	fraction
	tree_fract_all	Fraction of all returns classified as tree	fraction
	tree_iqr	Interquartile range (tree_p75-tree_p25) of tree	meters
		returns	
	tree_kurt	Kurtosis of tree return heights	meters
	tree_mad	Median Absolute Deviation [1]; (MAD =	meters
		median(height - median height) of tree returns	
	tree_mean	Mean of <i>tree</i> return heights	meters
	tree_p10tree_p100	Height percentiles (10% increments) of tree returns [3]	meters
	tree_qmean	Quadratic mean of tree return heights	meters
	tree refl max	Maximum relative reflectance of <i>tree</i> single returns	fraction
	tree refl mean	Mean relative reflectance of <i>tree</i> single returns	fraction
	tree skew	Skewness of <i>tree</i> return heights	meters
	 tree_stdev	Standard deviation of <i>tree</i> return heights	meters
	tree vdr	Vertical Distribution Ratio (normalized height range	unitless
		between canopy top and median <i>tree</i> returns [4]:	
		[tree p100-tree p50]/tree p100)	
	nmbu_d0nmbu_d9	Density deciles (10% increments) of tree returns [3]	fraction
Ground	ground aspect	Aspect derived from 1 m DTM	degrees

	ground_elev_mean	Mean of ground return elevations	meters
	ground_refl_max	Maximum relative reflectance of ground single returns	fraction
	ground_refl_mean	Mean relative reflectance of ground single returns	fraction
	ground_slope	Mean slope derived from 1 m DTM	degrees

Definitions:

CHM = Canopy Height Model (typically 1 m spatial resolution)

DTM = Digital Terrain Model (typically 1 m spatial resolution)

Elevation = height above EGM96 (Earth Gravitational Model 1996) geoid

Height = height above ground surface

Shrub returns = non-ground returns below 1.37 meters

Tree returns = returns above 1.37 meters

Reflectance (ρ) *value* = instrument calibrated, range corrected reflectance value for first, single return laser shots

Selected references:

1. BCAL LiDAR tools, http://code.google.com/p/bcal-lidar-tools/.

2. Evans, J., Hudak, A., Faux, R. and Smith, A.M., 2009. Discrete Return Lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables. Remote Sensing, 1(4): 776-794.

3. Density deciles are computed using two different methods, where d0 is closest to the ground and d9 is closest to the top of the canopy:

- a) all_d0...d9 and tree_d0..d9 use ten, equally-sized bins between minimum height threshold (ground for "all", and DBH for "tree") and maximum return height; and
- b) nmbu_d0...d9 uses ten bins between DBH and P95, and returns >P95 are added to the topmost bin (D9).

The later method (3b) is used by Eric Næsset and Terje Gobakken, Norwegian University of Life Sciences (NMBU).

4. Goetz, S., D. Steinberg, R. Dubayah, B. Blair. 2007. Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sensing of Environment 108: 254-263. doi:10.1016/j.rse.2006.11.016.