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CHAPTER

ONE

INTRODUCTION

The NASA Ames Stereo Pipeline (ASP) is a suite of free and open source automated geodesy and stereogrammetry
tools designed for processing stereo images captured from satellites (around Earth and other planets), robotic rovers,
aerial cameras, and historical images, with and without accurate camera pose information. It produces cartographic
products, including digital terrain models (DTMs), ortho-projected images, 3D models, and bundle-adjusted networks
of cameras. ASP’s data products are suitable for science analysis, mission planning, and public outreach.

Fig. 1.1: This 3D model was generated from a image pair M01/00115 and E02/01461 (34.66N, 141.29E). The complete
stereo reconstruction process takes approximately thirty minutes on a 3.0 GHz workstation for input images of this size
(1024 × 8064 pixels). This model, shown here without vertical exaggeration, is roughly 2 km wide in the cross-track
dimension.
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1.1 Background

The Intelligent Robotics Group (IRG) at the NASA Ames Research Center has been developing 3D surface recon-
struction and visualization capabilities for planetary exploration for more than a decade. First demonstrated during the
Mars Pathfinder Mission, the IRG has delivered tools providing these capabilities to the science operations teams of the
MPL mission, the MER mission, the MRO mission, and the LRO mission. A critical component technology enabling
this work is the ASP. The Stereo Pipeline generates high quality, dense, texture-mapped 3D surface models from stereo
image pairs. In addition, ASP provides tools to perform many other cartography tasks including map projection, point
cloud and DEM registration, automatic registration of cameras, data format conversion, and data visualization.

Although initially developed for ground control and scientific visualization applications, the Stereo Pipeline has
evolved to address orbital stereogrammetry and cartographic applications. In particular, long-range mission planning
requires detailed knowledge of planetary topography, and high resolution topography is often derived from stereo pairs
captured from orbit. Orbital mapping satellites are sent as precursors to planetary bodies in advance of landers and
rovers. They return a wealth of images and other data that helps mission planners and scientists identify areas worthy
of more detailed study. Topographic information often plays a central role in this planning and analysis process.

Our recent development of the Stereo Pipeline coincides with a period of time when NASA orbital mapping missions
are returning orders of magnitude more data than ever before. Data volumes from the Mars and Lunar Reconnaissance
Orbiter missions now measure in the tens of terabytes. There is growing consensus that existing processing techniques,
which are still extremely human intensive and expensive, are no longer adequate to address the data processing needs
of NASA and the Planetary Science community. To pick an example of particular relevance, the HiRISE instrument
has captured a few thousand stereo pairs. Of these, only about two hundred stereo pairs have been processed to
date; mostly on human-operated, high-end photogrammetric workstations. It is clear that much more value could be
extracted from this valuable raw data if a more streamlined, efficient process could be developed.

The Stereo Pipeline was designed to address this very need. By applying recent advances in computer vision, we have
created an automated process that is capable of generating high quality DTMs with minimal human intervention. Users
of the Stereo Pipeline can expect to spend some time picking a handful of settings when they first start processing a
new type of image, but once this is done, the Stereo Pipeline can be used to process tens, hundreds, or even thousands
of stereo pairs without further adjustment. With the release of this software, we hope to encourage the adoption of
this tool chain at institutions that run and support these remote sensing missions. Over time, we hope to see this tool
incorporated into ground data processing systems alongside other automated image processing pipelines. As this tool
continues to mature, we believe that it will be capable of producing digital elevation models of exceptional quality
without any human intervention.

1.2 Human vs. Computer: When to Choose Automation?

When is it appropriate to choose automated stereo mapping over the use of a conventional, human-operated pho-
togrammetric workstation? This is a philosophical question with an answer that is likely to evolve over the coming
years as automated data processing technologies become more robust and widely adopted. For now, our opinion is
that you should always rely on human-guided, manual data processing techniques for producing mission critical data
products for missions where human lives or considerable capital resources are at risk. In particular, maps for landing
site analysis and precision landing absolutely require the benefit of an expert human operator to eliminate obvious
errors in the DEMs, and also to guarantee that the proper procedures have been followed to correct satellite telemetry
errors so that the data have the best possible geodetic control.

When it comes to using DTMs for scientific analysis, both techniques have their merits. Human-guided stereo re-
construction produces DTMs of unparalleled quality that benefit from the intuition and experience of an expert. The
process of building and validating these DTMs is well-established and accepted in the scientific community.

However, only a limited number of DTMs can be processed to this level of quality. For the rest, automated stereo
processing can be used to produce DTMs at a fraction of the cost. The results are not necessarily less accurate than
those produced by the human operator, but they will not benefit from the same level of scrutiny and quality control.
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As such, users of these DTMs must be able to identify potential issues, and be on the lookout for errors that may result
from the improper use of these tools.

We recommend that all users of the Stereo Pipeline take the time to thoroughly read this documentation and build an
understanding of how stereo reconstruction and bundle adjustment can be best used together to produce high quality
results. You are welcome to contact us if you have any questions (Section 1.4).

1.3 Software Foundations

1.3.1 NASA Vision Workbench

The Stereo Pipeline is built upon the Vision Workbench software which is a general purpose image processing and
computer vision library also developed by the IRG. Some of the tools discussed in this document are actually Vision
Workbench programs, and any distribution of the Stereo Pipeline requires the Vision Workbench. This distinction is
important only if compiling this software.

1.3.2 The USGS Integrated Software for Imagers and Spectrometers

For processing non-terrestrial NASA satellite images, Stereo Pipeline must be installed alongside a copy of the Inte-
grated Software for Imagers and Spectrometers (ISIS). ISIS is however not required for processing terrestrial images
(DigitalGlobe/Maxar WorldView, etc.).

ISIS is widely used in the planetary science community for processing raw spacecraft images
into high level data products of scientific interest such as map-projected and mosaicked images
[AndersonSidesSoltesz+04][GaddisAndersonBecker+97][USGS09]. We chose ISIS because (1) it is widely
adopted by the planetary science community, (2) it contains the authoritative collection of geometric camera models
for planetary remote sensing instruments, and (3) it is open source software that is easy to leverage.

By installing the Stereo Pipeline, you will be adding an advanced stereo image processing capability that can be used
in your existing ISIS workflow. The Stereo Pipeline supports the ISIS cube (.cub) file format, and can make use of
the camera models and ancillary information (i.e. SPICE kernels) for imagers on many NASA spacecraft. The use of
this single standardized set of camera models ensures consistency between products generated in the Stereo Pipeline
and those generated by ISIS. Also by leveraging ISIS camera models, the Stereo Pipeline can process stereo pairs
captured by just about any NASA mission.

1.4 Getting Help and Reporting Bugs

All bugs, feature requests, and general discussion should be posted on the ASP support forum:

https://groups.google.com/forum/#!forum/ames-stereo-pipeline-support

To contact the developers and project manager directly, send an email to:

stereo-pipeline-owner@lists.nasa.gov

When you submit a bug report, it may be helpful to attach the logs output by stereo and other tools (Section 2.7.2).

1.3. Software Foundations 3

https://groups.google.com/forum/#!forum/ames-stereo-pipeline-support
mailto:stereo-pipeline-owner@lists.nasa.gov


Ames Stereo Pipeline Documentation, Release 3.0.0

1.5 Typographical Conventions

Names of programs that are meant to be run on the command line are written in a constant-width font, like the stereo
program, as are options to those programs.

An indented line of constant-width text can be typed into your terminal, these lines will either begin with a ‘>’ to denote
a regular shell, or with ‘ISIS>’ which denotes an ISIS-enabled shell (which means you have to set the ISISROOT
environment variable and have sourced the appropriate ISIS startup script, as detailed in the ISIS instructions).

> ls

ISIS> pds2isis

Constant-width text enclosed in greater-than and less-than brackets denotes an option or argument that a user will need
to supply. For example, ‘stereo E0201461.map.cub M0100115.map.cub out’ is specific, but ‘stereo
<left-image> <right-image> out’ indicates that <left-image> and <right-image> are not the
names of specific files, but dummy parameters which need to be replaced with actual file names.

Square brackets denote optional options or values to a command, and items separated by a vertical bar are either aliases
for each other, or different, specific options. Default arguments or other notes are enclosed by parentheses, and line
continuation with a backslash:

point2dem [-h|--help] [-r moon|mars] [-s <float(default: 0.0)>] \
[-o <output-filename>] <pointcloud>-PC.tif

The above indicates a run of the point2dem program. The only argument that it requires is a point cloud file,
which is produced by the stereo program and ends in -PC.tif, although its prefix could be anything (hence the
greater-than and less-than enclosing brackets). Everything else is in square brackets indicating that they are optional.

Here, --help and -h refer to the same thing. Similarly, the argument to the -r option must be either moon or
mars. The -s option takes a floating point value as its argument, and has a default value of zero. The -o option takes
a filename that will be used as the output DTM.

Although there are two lines of constant-width text, the backslash at the end of the first line indicates that the command
continues on the second line. You can either type everything into one long line on your own terminal, or use the
backslash character and a return to continue typing on a second line in your terminal.

1.6 Referencing the Ames Stereo Pipeline in Your Work

In general, please use this reference for the Ames Stereo Pipeline:

Beyer, Ross A., Oleg Alexandrov, and Scott McMichael. 2018. The Ames Stereo Pipeline: NASA’s open
source software for deriving and processing terrain data. Earth and Space Science, 5. https://doi.org/10.
1029/2018EA000409.

If you are using ASP for application to Earth images, or need a reference which details the quality of output, then we
suggest also referencing:

Shean, D. E., O. Alexandrov, Z. Moratto, B. E. Smith, I. R. Joughin, C. C. Porter, Morin, P. J. 2016. An
automated, open-source pipeline for mass production of digital elevation models (DEMs) from very high-
resolution commercial stereo satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing.
116.

In addition to using the references above, in order to help you better cite the specific version of ASP that you are using
in a work, as of ASP version 2.6.0, we have started using Zenodo to create digital object identifiers (DOIs) for each
ASP release. For example, the DOI for version 2.6.2 is 10.5281/zenodo.3247734, and you can cite it like this:
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Beyer, Ross A., Oleg Alexandrov, and Scott McMichael. 2019. NeoGeographyToolkit/StereoPipeline:
Ames Stereo Pipeline version 2.6.2. Zenodo. DOI: 10.5281/zenodo.3247734.

Of course, every new release of ASP will have its own unique DOI, and this link should always point to the latest DOI
for ASP.

If you publish a paper using ASP, please let us know. We’ll cite your work in this document, in Section 18.

1.7 Warnings to Users of the Ames Stereo Pipeline

Ames Stereo Pipeline is a research product. There may be bugs or incomplete features. We reserve the ability to
change the API and command line options of the tools we provide. Although we hope you will find this release
helpful, you use it at your own risk. Please check each release’s NEWS file to see a summary of our recent changes.

While we are confident that the algorithms used by this software are robust, the Ames Stereo Pipeline has a lot of
adjustable parameters, and even experienced operators can produce poor results. We strongly recommend that if you
have any concerns about the products that you (or others) create with this software, please just get in contact with us.
We can help you figure out either how to make the product better, or help you accurately describe the limitations of
the data or the data products, so that you can use it to confidently make new and wonderful discoveries.
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CHAPTER

TWO

INSTALLATION

Precompiled binaries are available for the stable releases and the current development build. Stereo Pipeline can also
be compiled from source, but this is not recommended.

2.1 Precompiled binaries (Linux and macOS)

Simply download the appropriate distribution for your operating system, extract, and run the executables in the bin
subdirectory. No other ‘installation’ steps or administrative rights are necessary.

• Stable releases and daily builds

See the NEWS file (Section 19) for the most recent additions.

To permanently add the ASP executable subdirectory to your PATH, you can add the following line to your shell config-
uration (e.g., ~/.bashrc), replacing /path/to/StereoPipeline/bin with the location on your filesystem:

export PATH=${PATH}:/path/to/StereoPipeline/bin

2.1.1 Planetary images

If you plan to process images from NASA’s spacecraft that are exploring other planets, you will probably need to have
ISIS installed. A full ISIS installation is not required for operation of the main Stereo Pipeline programs (only the ISIS
data directory is needed), but it is required for certain preprocessing steps before Stereo Pipeline programs are run for
planetary data. If you only want to process terrestrial Digital Globe images, skip to the Quick Start for Digital Globe
Users section.

To perform pre-processing (radiometric calibration, ephemeris processing, etc.), of non-terrestrial images prior to
running Stereo Pipeline, you will need to install ISIS. Just as with our binaries, you can use the ISIS binaries as-is.

If you need to recompile, you can follow the instructions for Building ASP from Source (but we don’t recommend it).
If the current version of ISIS is newer than the version of ISIS that the Stereo Pipeline is compiled against (listed in
the ASP Release Notes), be assured that we’re working on rolling out a new version. However, since Stereo Pipeline
has its own self-contained version of ISIS’s libraries built internally, you should be able to use a newer version of ISIS
with the now dated version of ASP. This is assuming no major changes have taken place in the data formats or camera
models by the ISIS Developers. At the very least, you should be able to install older versions of ISIS if a failure is
found. To do so, follow the ISIS installation instructions, but create a new conda environment (not the one with your
current ISIS), and right before you would run conda install isis, run conda search isis to find all of
the versions of ISIS available for installation. For example, if you wanted to install ISIS 5.0.1, and it is available in
the conda search isis listing, you can run conda install isis=5.0.1 (to install that specific version
of ISIS) and then follow the remainder of the ISIS installation instructions.
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In closing, running the Stereo Pipeline executables only requires that you have downloaded the ISIS secondary data
and have appropriately set the ISISDATA environment variable. This is normally performed for the user by starting
up the conda ISIS environment.

2.1.2 Quick start for ISIS users

Using the packaged ASP tarball

1. Fetch Stereo Pipeline from https://github.com/NeoGeographyToolkit/StereoPipeline/releases

2. Fetch ISIS Binaries and install, following https://github.com/USGS-Astrogeology/ISIS3#installation

3. Fetch ISIS Data, as detailed at https://github.com/USGS-Astrogeology/ISIS3#the-isis-data-area

4. Untar Stereo Pipeline:

tar xzvf StereoPipeline-<VERSION>-<ARCH>-<OS>.tar.gz

5. Add Stereo Pipeline to Path (optional):

• bash: export PATH="</path/to/StereoPipeline>/bin:${PATH}"

• csh: setenv PATH "</path/to/StereoPipeline>/bin:${PATH}"

6. Try It Out: See Section 3 for an example.

Installing ASP and ISIS in the same conda environment

This is discussed further down.

2.1.3 Quick start for Digital Globe users

1. Fetch Stereo Pipeline from https://github.com/NeoGeographyToolkit/StereoPipeline/releases

2. Untar Stereo Pipeline:

tar xzvf StereoPipeline-<VERSION>-<ARCH>-<OS>.tar.gz

3. Try It Out: Processing Earth images is described in the data processing tutorial in Section 4.

2.1.4 Quick start for aerial and historical images

Fetch the software as above. Processing images without accurate camera pose information is described in Section 9.

2.2 Common errors

Here are some errors you might see, and what it could mean. Treat these as templates for problems. In practice, the
error messages might be slightly different.

**I/O ERROR** Unable to open [$ISISDATA/<Some/Path/Here>].
Stereo step 0: Preprocessing failed

You need to set up your ISIS environment or manually set the correct location for ISISDATA.
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bash: stereo: command not found

You need to add the bin directory of your deployed Stereo Pipeline installation to the environmental variable PATH.

2.3 Fetching pre-compiled ASP with conda

Get conda from:

https://docs.conda.io/en/latest/miniconda.html

Make it executable, and run:

./Miniconda3-latest-Linux-x86_64.sh

on Linux, and the appropriate version on OSX. Use the suggested:

$HOME/miniconda3

directory for installation.

Create an environment for ASP as:

conda create -n asp python=3.6
conda activate asp

Add relevant channels:

conda config --env --add channels conda-forge
conda config --env --add channels usgs-astrogeology
conda config --env --add channels nasa-ames-stereo-pipeline

Do not skip doing each of these three, even if you think you already have some of these channels.

Run:

conda config --show channels

to ensure that the order of channels is:

- nasa-ames-stereo-pipeline
- usgs-astrogeology
- conda-forge
- defaults

It is possible that you may already have some of these channels in a global ~/.condarc file, and you may be tempted
to just run the final add channels command. If you aren’t familiar with conda channel management, this may have
unintended consequences. Please inspect the order of the output of the --show channels command carefully, if it
is not exactly like the above, you can either edit the $CONDA_PREFIX/.condarc file, or delete it completely, and
then run each of the three conda config --env -add channels commands exactly as shown.

We do not recommend using the --prepend channels argument, as that will add the
nasa-ames-stereo-pipeline to your default ~/.condarc file and will have consequences for all of
your conda environments, which you don’t want.

Install ASP with the command:

2.3. Fetching pre-compiled ASP with conda 9
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conda install stereo-pipeline==3.0.0

This will install ASP 3.0.0 together with ISIS 5.0.1.

If using ISIS, the environmental variable ISISROOT should be set to point to this distribution, such as:

export ISISROOT=$HOME/miniconda3/envs/asp

Check that the stereo command can be found as:

which stereo

Some variability may exist in the precise dependencies fetched by conda. For the record, the full environment for this
release can be found as a set of .yaml files in the conda/ subdirectory of the Stereo Pipeline GitHub repository. So,
alternatively, the installation can happen as:

conda env create -f asp_3.0.0_linux_env.yaml

or:

conda env create -f asp_3.0.0_osx_env.yaml

depending on your platform. Then invoke, as earlier:

conda activate asp

Finally, if you are working with planetary data, you need to complete the ISIS installation steps from this new asp
conda environment. Your new asp environment already has the base ISIS software installed, but you must run the
script which sets the ISIS environment variables, and also install the appropriate ISIS data files (if you also have a
separate ISIS conda environment, you can use the set-up script to point the asp conda environment’s ISISDATA
environment variable to your existing data area). For more information see the ISIS installation instructions.

2.4 Building ASP from source

This entails downloading all the ASP dependencies with conda first as pre-compiled binaries, then pulling the Vision-
Workbench and Stereo Pipeline source code from GitHub, and building locally. This is suggested only for the very
adventurous user.

The environments having the ASP dependencies are in the conda directory of the Stereo Pipeline repository, as above.
After downloading those, one can run on Linux:

conda env create -f asp_deps_3.0.0_linux_env.yaml

or on the Mac:

conda env create -f asp_deps_3.0.0_osx_env.yaml

This will create an asp_deps environment. Activate it with:

conda activate asp_deps

Some of the .la files created by conda point to other .la files that are not available. For that reason, those files should
be edited to replace:
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/path/to/libmylibrary.la

with:

-L/path/to -lmylibrary

This can be done with the following commands:

cd ~/miniconda3/envs/asp_deps/lib
mkdir -p backup
cp -fv *.la backup # back these up
perl -pi -e "s#(/[^\s]*?lib)/lib([^\s]+).la#-L\$1 -l\$2#g" *.la

The Linux environment will also contain the needed C and C++ compilers. On the Mac the compilers provided with
conda did not build ASP correctly, hence it is suggested to use the Apple-provided clang and clang++.

Next, set up a work directory:

buildDir=$HOME/build_asp
mkdir -p $buildDir

Building VisionWorkbench and Stereo Pipeline on Linux:

cd $buildDir
~/miniconda3/envs/asp_deps/bin/git clone \

git@github.com:visionworkbench/visionworkbench.git
cd visionworkbench
git checkout 3.0.0 # check out the desired commit
mkdir -p build
cd build
~/miniconda3/envs/asp_deps/bin/cmake ..
↪→ \
-DASP_DEPS_DIR=$HOME/miniconda3/envs/asp_deps

↪→ \
-DCMAKE_VERBOSE_MAKEFILE=ON

↪→ \
-DCMAKE_INSTALL_PREFIX=$buildDir/install

↪→ \
-DCMAKE_C_COMPILER=$HOME/miniconda3/envs/asp_deps/bin/x86_64-conda_cos6-linux-gnu-

↪→gcc \
-DCMAKE_CXX_COMPILER=$HOME/miniconda3/envs/asp_deps/bin/x86_64-conda_cos6-linux-gnu-

↪→g++
make -j10
make install

cd $buildDir
~/miniconda3/envs/asp_deps/bin/git clone \
git@github.com:NeoGeographyToolkit/StereoPipeline.git
cd StereoPipeline
git checkout 3.0.0 # check out the desired commit
mkdir -p build
cd build
~/miniconda3/envs/asp_deps/bin/cmake ..
↪→ \
-DASP_DEPS_DIR=$HOME/miniconda3/envs/asp_deps

↪→ \
-DCMAKE_VERBOSE_MAKEFILE=ON

↪→ \

2.4. Building ASP from source 11
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-DCMAKE_INSTALL_PREFIX=$buildDir/install
↪→ \
-DVISIONWORKBENCH_INSTALL_DIR=$buildDir/install

↪→ \
-DCMAKE_C_COMPILER=$HOME/miniconda3/envs/asp_deps/bin/x86_64-conda_cos6-linux-gnu-

↪→gcc \
-DCMAKE_CXX_COMPILER=$HOME/miniconda3/envs/asp_deps/bin/x86_64-conda_cos6-linux-gnu-

↪→g++
make -j10
make install

Building VisionWorkbench and ASP on OSX (just as above, but omitting the compilers):

cd $buildDir
~/miniconda3/envs/asp_deps/bin/git clone \

git@github.com:visionworkbench/visionworkbench.git
cd visionworkbench
git checkout 3.0.0 # check out the desired commit
mkdir -p build
cd build
~/miniconda3/envs/asp_deps/bin/cmake ..
↪→ \
-DASP_DEPS_DIR=$HOME/miniconda3/envs/asp_deps

↪→ \
-DCMAKE_VERBOSE_MAKEFILE=ON

↪→ \
-DCMAKE_INSTALL_PREFIX=$buildDir/install

make -j10
make install

cd $buildDir
~/miniconda3/envs/asp_deps/bin/git clone \

git@github.com:NeoGeographyToolkit/StereoPipeline.git
cd StereoPipeline
git checkout 3.0.0 # check out the desired commit
mkdir -p build
cd build
~/miniconda3/envs/asp_deps/bin/cmake ..
↪→ \
-DASP_DEPS_DIR=$HOME/miniconda3/envs/asp_deps

↪→ \
-DCMAKE_VERBOSE_MAKEFILE=ON

↪→ \
-DVISIONWORKBENCH_INSTALL_DIR=$buildDir/install

↪→ \
-DCMAKE_INSTALL_PREFIX=$buildDir/install

make -j10
make install
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2.5 Building the documentation

The ASP documentation is encoded in ReStructured Text and is built with the Sphinx-Doc system (https://www.
sphinx-doc.org) with sphinxcontrib-bibtex (https://sphinxcontrib-bibtex.readthedocs.io). These packages can be in-
stalled and activated as follows:

conda create -n sphinx python=3.6 sphinx==3.5.4 \
sphinxcontrib-bibtex==2.1.4

conda activate sphinx

Note that we used a separate conda environment to minimize the chance of conflict with other dependencies. Also,
sphinx version 4 seems to have trouble compiling our documentation, hence a lower version is used here.

In order to build the PDF (but not the HTML) document, a full LaTeX distribution is also necessary, such as TeX Live.

The docs directory contains the root of the documentation. Running make html and make latexpdf there will
create the HTML and PDF versions of the documentation in the _build subdirectory. In particular, the PDF document
will be at:

./_build/latex/asp_book.pdf

2.6 Building ASP and its dependencies with conda

This is an advanced topic discussed in Section 21.

2.7 Settings Optimization

Finally, the last thing to be done for Stereo Pipeline is to setup up Vision Workbench’s render and logging settings.
This step is optional, but for best performance some thought should be applied here.

Vision Workbench is a multi-threaded image processing library used by Stereo Pipeline. The settings by which Vision
Workbench processes data are configurable by having a .vwrc file hidden in your home directory. Below is an
example:

# This is an example VW configuration file. Save this file to
# ~/.vwrc to adjust the VW log settings, even if the program is
#already running.

# General settings
[general]
default_num_threads = 16
write_pool_size = 40
system_cache_size = 1024000000 # ~ 1 GB

# The following integers are associated with the log levels
# throughout the Vision Workbench. Use these in the log rules
# below.
#
# ErrorMessage = 0
# WarningMessage = 10
# InfoMessage = 20
# DebugMessage = 30
# VerboseDebugMessage = 40
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# EveryMessage = 100
#
# You can create a new log file or adjust the settings
# for the console log:
# logfile <filename>
# - or -
# logfile console

# Once you have created a logfile (or selected the console), you
# can add log rules using the following syntax. (Note that you
# can use wildcard characters '*' to catch all log_levels for a
# given log_namespace, or vice versa.)

# <log_level> <log_namespace>

# Below are examples of using the log settings.

# Turn on various logging levels for several subsystems, with
# the output going to the console (standard output).
[logfile console]
# Turn on error and warning messages for the thread subsystem.
10 = thread
# Turn on error, warning, and info messages for the
# asp subsystem.
20 = asp
# Turn on error, warning, info, and debug messages for the
# stereo subsystem.
30 = stereo
# Turn on every single message for the cache subsystem (this will
# be extremely verbose and is not recommended).
# 100 = cache
# Turn off all progress bars to the console (not recommended).
# 0 = *.progress

# Turn on logging of error and warning messages to a file for the
# stereo subsystem. Warning: This file will be always appended
# to, so it should be deleted periodically.
# [logfile /tmp/vw_log.txt]
# 10 = stereo

There are a lot of possible options that can be implemented in the above example. Let’s cover the most important
options and the concerns the user should have when selecting a value.

2.7.1 Performance Settings

default_num_threads (default=2) This sets the maximum number of threads that can be used for rendering.
When stereo’s subpixel_rfne is running you’ll probably notice 10 threads are running when you have
default_num_threads set to 8. This is not an error, you are seeing 8 threads being used for rendering, 1
thread for holding main()’s execution, and finally 1 optional thread acting as the interface to the file driver.

It is usually best to set this parameter equal to the number of processors on your system. Be sure to include the
number of logical processors in your arithmetic if your system supports hyper-threading. Adding more threads
for rasterization increases the memory demands of Stereo Pipeline. If your system is memory limited, it might
be best to lower the default_num_threads option.

write_pool_size (default=21) The write_pool_size option represents the max waiting pool size of tiles
waiting to be written to disk. Most file formats do not allow tiles to be written arbitrarily out of order. Most
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however will let rows of tiles to be written out of order, while tiles inside a row must be written in order. Because
of the previous constraint, after a tile is rasterized it might spend some time waiting in the ‘write pool’ before it
can be written to disk. If the ‘write pool’ fills up, only the next tile in order can be rasterized. That makes Stereo
Pipeline perform like it is only using a single processor.

Increasing the write_pool_size makes Stereo Pipeline more able to use all processing cores in the system.
Having this value too large can mean excessive use of memory as it must keep more portions of the image around
in memory while they wait to be written. This number should be larger than the number of threads, perhaps by
about 20.

system_cache_size (default=805306368) Accessing a file from the hard drive can be very slow. It is espe-
cially bad if an application needs to make multiple passes over an input file. To increase performance, Vision
Workbench will usually leave an input file stored in memory for quick access. This file storage is known as the
’system cache’ and its max size is dictated by system_cache_size. The default value is 768 MB.

Setting this value too high can cause your application to crash. It is usually recommend to keep this value around
1/4 of the maximum available memory on the system. The units of this property is in bytes.

The recommendations for these values are based on use of the block matching algorithm in ASP. When using
memory intensive algorithms such as SGM you may wish to lower some of these values (such as the cache size)
to leave more memory available for the algorithm to use.

2.7.2 Logging Settings

The messages displayed in the console by Stereo Pipeline are grouped into several namespaces, and by level of ver-
bosity. An example of customizing Stereo Pipeline’s output is given in the .vwrc file shown above.

Several of the tools in Stereo Pipeline, including stereo, automatically append the information displayed in the
console to a log file in the current output directory. These logs contain in addition some data about your system and
settings, which may be helpful in resolving problems with the tools.

It is also possible to specify a global log file to which all tools will append to, as illustrated in .vwrc.
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CHAPTER

THREE

TUTORIAL: PROCESSING MARS ORBITER CAMERA IMAGES

3.1 Quick Start

The Stereo Pipeline package contains command-line and GUI programs that convert a stereo pair in the ISIS .cub
format into a 3D “point cloud” image (its format is described in Section 16). This is an intermediate format that can
be passed along to one of several programs that convert a point cloud into a mesh for 3D viewing, a gridded digital
terrain model (DTM) for GIS purposes, or a LAS/LAZ point cloud.

There are a number of ways to fine-tune parameters and analyze the results, but ultimately this software suite takes
images and builds models in a mostly automatic way. To create a point cloud file, you simply pass two image files to
the stereo command:

ISIS> stereo left_image.cub right_image.cub results/run

Higher quality results, at the expense of more computation, can be achived by running:

ISIS> parallel_stereo --alignment-method local_epipolar \
--stereo-algorithm asp_mgm --subpixel-mode 3 \
left_image.cub right_image.cub results/run

This will decompose the images in tiles to run in parallel, potentially on multiple machines. For more details, see
Section 5.

Or the stereo_gui frontend can be invoked, with the same options, as described in Section 13.47. This tool makes
it possible to manually select smaller clips on which to run stereo.

The string results/run is an arbitrary output prefix. All stereo output files will be in the results directory
and start with output. See Section 5 for a more detailed discussion.

You can then make a visualizable mesh or a DTM file with the following commands (the results/run-PC.tif
and results/run-L.tif files are created by the stereo program above):

ISIS> point2mesh results/run-PC.tif results/run-L.tif
ISIS> point2dem results/run-PC.tif

More details are provided in Section 5.2.
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3.2 Preparing the Data

The data set that is used in the tutorial and examples below is a pair of Mars Orbital Camera (MOC)
[MalinDanielsonIngersoll+92][MalinEdgett01] images whose PDS Product IDs are M01/00115 and E02/01461. This
data can be downloaded from the PDS directly, or they can be found in the examples/MOC directory of your Stereo
Pipeline distribution.

3.2.1 Loading and Calibrating Images using ISIS

These raw PDS images (M0100115.imq and E0201461.imq) need to be imported into the ISIS environment and
radiometrically calibrated. You will need to be in an ISIS environment (usually via a conda activate command
which sets the ISISROOT and ISISDATA environment variables; we will denote this state with the ISIS> prompt).
Then you can use the mocproc program, as follows:

ISIS> mocproc from=M0100115.imq to=M0100115.cub Mapping=NO
ISIS> mocproc from=E0201461.imq to=E0201461.cub Mapping=NO

There are also Ingestion and Calibration parameters whose defaults are YES which will bring the image into
the ISIS format and perform radiometric calibration. By setting the Mapping parameter to NO, the resultant file will
be an ISIS cube file that is calibrated, but not map-projected. Note that while we have not explicitly run spiceinit,
the Ingestion portion of mocproc quietly ran spiceinit for you (you’ll find the record of it in the ISIS Session
Log, usually written out to a file named print.prt). Fig. 3.1 shows the results at this stage of processing.

Datasets for other type of cameras or other planets can be pre-processed similarly, using the ISIS tools specific to
them.

3.2.2 Aligning Images

Once the .cub files are obtained, it is possible to run stereo right away:

ISIS> stereo E0201461.cub M0100115.cub \
--alignment-method affineepipolar \
-s stereo.default.example results/output

In this case, the first thing stereo does is to internally align (or rectify) the images, which helps with finding stereo
matches. Here we have used affineepipolar alignment. Another option is to use homography alignment, as
described in Section 5.1.2.

Alternatively, the images can be aligned externally, by map-projecting them in ISIS. External alignment can sometimes
give better results than the simple internal alignment described earlier, especially if the images are taken from very
different perspectives, or if the curvature of the planet/body being imaged is non-negligible.

We will now describe how to do this alignment, but we also provide the cam2map4stereo.py program which
performs this work automatically for you. (Also note that ASP has its own internal way of map-projecting images,
which we believe is preferable. That approach is described in Section 5.1.7.)

The ISIS cam2map program will map-project these images:

ISIS> cam2map from=M0100115.cub to=M0100115.map.cub
ISIS> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

Notice the order in which the images were run through cam2map. The first projection with M0100115.cub pro-
duced a map-projected image centered on the center of that image. The projection of E0201461.cub used the map=
parameter to indicate that cam2map should use the same map projection parameters as those of M0100115.map.
cub (including center of projection, map extents, map scale, etc.) in creating the projected image. By map-projecting
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Fig. 3.1: This figure shows E0201461.cub and M0100115.cub open in ISIS’s qview program. The view on the
left shows their full extents at the same zoom level, showing how they have different ground scales. The view on the
right shows both images zoomed in on the same feature.
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the image with the worse resolution first, and then matching to that, we ensure two things: (1) that the second image is
summed or scaled down instead of being magnified up, and (2) that we are minimizing the file sizes to make processing
in the Stereo Pipeline more efficient.

Technically, the same end result could be achieved by using the mocproc program alone, and using its map=
M0100115.map.cub option for the run of mocproc on E0201461.cub (it behaves identically to cam2map).
However, this would not allow for determining which of the two images had the worse resolution and extracting
their minimum intersecting bounding box (see below). Furthermore, if you choose to conduct bundle adjustment (see
Section 8) as a pre-processing step, you would do so between mocproc (as run above) and cam2map.

The above procedure is in the case of two images which cover similar real estate on the ground. If you have a pair of
images where one image has a footprint on the ground that is much larger than the other, only the area that is common
to both (the intersection of their areas) should be kept to perform correlation (since non-overlapping regions don’t
contribute to the stereo solution). If the image with the larger footprint size also happens to be the image with the
better resolution (i.e. the image run through cam2map second with the map= parameter), then the above cam2map
procedure with matchmap=true will take care of it just fine. Otherwise you’ll need to figure out the latitude
and longitude boundaries of the intersection boundary (with the ISIS camrange program). Then use that smaller
boundary as the arguments to the MINLAT, MAXLAT, MINLON, and MAXLON parameters of the first run of cam2map.
So in the above example, after mocproc with Mapping= NO you’d do this:

ISIS> camrange from=M0100115.cub
... lots of camrange output omitted ...

Group = UniversalGroundRange
LatitudeType = Planetocentric
LongitudeDirection = PositiveEast
LongitudeDomain = 360
MinimumLatitude = 34.079818835324
MaximumLatitude = 34.436797628116
MinimumLongitude = 141.50666207418
MaximumLongitude = 141.62534719278

End_Group
... more output of camrange omitted ...

ISIS> camrange from=E0201461.cub
... lots of camrange output omitted ...

Group = UniversalGroundRange
LatitudeType = Planetocentric
LongitudeDirection = PositiveEast
LongitudeDomain = 360
MinimumLatitude = 34.103893080982
MaximumLatitude = 34.547719435156
MinimumLongitude = 141.48853937384
MaximumLongitude = 141.62919740048

End_Group
... more output of camrange omitted ...

Now compare the boundaries of the two above and determine the intersection to use as the boundaries for cam2map:

ISIS> cam2map from=M0100115.cub to=M0100115.map.cub DEFAULTRANGE=CAMERA \
MINLAT=34.10 MAXLAT=34.44 MINLON=141.50 MAXLON=141.63

ISIS> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

You only have to do the boundaries explicitly for the first run of cam2map, because the second one uses the map=
parameter to mimic the map-projection of the first. These two images are not radically different in spatial coverage,
so this is not really necessary for these images, it is just an example.

Again, unless you are doing something complicated, using the cam2map4stereo.py program (page ) will take
care of all these steps for you.
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At this stage we can run the stereo program with map-projected images:

ISIS> stereo E0201461.map.cub M0100115.map.cub --alignment-method none \
-s stereo.default.example results/output

Here we have used alignment-method none since cam2map4stereo.py brought the two images into the
same perspective and using the same resolution. If you invoke cam2map independently on the two images, without
matchmap=true, their resolutions may differ, and using an alignment method rather than none to correct for that
is still necessary.

Now you may skip to chapter Section 5 which will discuss the stereo program in more detail and the other tools in
ASP.
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CHAPTER

FOUR

TUTORIAL: PROCESSING EARTH DIGITALGLOBE/MAXAR IMAGES

In this chapter we will focus on how to process Earth images, or more specifically DigitalGlobe/Maxar data. This
is different from our previous chapter in that at no point will we be using ISIS utilities. This is because ISIS only
supports NASA instruments, while most Earth images comes from commercial providers.

In addition to DigitalGlobe/Maxar’s satellites, ASP supports any Earth images that uses the RPC camera model format.
How to process such data is described in Section 10.14, although following this tutorial may still be insightful even if
your data is not from DigitalGlobe/Maxar.

DigitalGlobe/Maxar provides images from QuickBird and the three WorldView satellites. These are the hardest images
to process with Ames Stereo Pipeline because they are exceedingly large, much larger than HiRISE images (the
GUI interface can be used to run stereo on just a portion of the images). There is also a wide range of terrain
challenges and atmospheric effects that can confuse ASP. Trees are particularly difficult for us since their texture is
nearly nadir and perpendicular to our line of sight. It is important to know that the driving force behind our support for
DigitalGlobe/Maxar images is to create models of ice and bare rock. Those are the type of images that we have tested
with and have focused on. If we can make models of wooded or urban areas, that is a bonus, but we can’t provide any
advice for how to perform or improve the results if you choose to use ASP in that way.

ASP can only process Level 1B satellite images, and cannot process DigitalGlobe/Maxar’s aerial images.

The camera information for DigitalGlobe/Maxar images is contained in an XML file for each image. In addition to
the exact linear camera model, the XML file also has its RPC approximation. In this chapter we will focus only on
processing data using the linear camera model. For more detail on RPC camera models we refer as before to Section
10.14.

Our implementation of the linear camera model accounts for the sensor geometry, velocity aberration and atmospheric
refraction. These corrections will shift point locations by over a meter for some images. However this is still smaller
error than the error from measurement of the spacecraft’s position and orientation. The latter can be corrected using
bundle adjustment, ideally used with ground control points (Section 13.5). Alternatively, the pc_align tool dis-
cussed in Section 5.2.5 can be used to align the terrain obtained from ASP to an accurate set of ground measurements.

In the next two sections we will show how to process unmodified and map-projected variants of WorldView images.
The images we are using is from the free stereo pair labeled “System-Ready (1B) Stereo, 50cm” which captures the
city of Stockholm, found on DigitalGlobe/Maxar’s website (https://www.digitalglobe.com/samples). These images
represent a non-ideal problem for us since this is an urban location, but at least you should be able to download these
images yourself and follow along.
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4.1 Processing Raw

After you have downloaded the example stereo images of Stockholm, you will find a directory titled:

056082198020_01_P001_PAN

It has a lot of files and many of them contain redundant information just displayed in different formats. We are
interested only in the TIF or NTF images and the similarly named XML files.

Some Worldview folders will contain multiple image files. This is because DigitalGlobe/Maxar breaks down a single
observation into multiple files for what we assume are size reasons. These files have a pattern string of “_R[N]C1-
”, where N increments for every subframe of the full observation. The tool named dg_mosaic can be used to
mosaic (and optionally reduce the resolution of) such a set of sub-observations into a single image file and create an
appropriate camera file:

> dg_mosaic 12FEB16101327*TIF --output-prefix 12FEB16101327

and analogously for the second set. See Section 13.17 for more details. The stereo program can use either the
original or the mosaicked images. This sample data only contains two image files so we do not need to use the
dg_mosaic tool.

Since we are ingesting these images raw, it is strongly recommended that you use affine epipolar alignment to reduce
the search range. The stereo command and a rendering of the results are shown below.

stereo -t dg --subpixel-mode 1 --alignment-method affineepipolar \
12FEB16101327.r50.tif 12FEB16101426.r50.tif \
12FEB16101327.r50.xml 12FEB16101426.r50.xml dg/out

As in Section 3, one can experiment with various tradeoffs of quality versus run time by using various stereo algo-
rithms, and use stereo in parallel or from a GUI. For more details, see Section 5.

How to create a DEM and visualize the results of stereo is described in Section 5.2.

Fig. 4.1: Example WorldView image section and colorized height map.

It is important to note that we could have performed stereo using the approximate RPC model instead of the exact
linear camera model (both models are in the same XML file), by switching the session in the stereo command
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above from -t dg to -t rpc. The RPC model is somewhat less accurate, so the results will not be the same, in our
experiments we’ve seen differences in the 3D terrains using the two approaches of 5 meters or more.

4.2 Processing Map-Projected Images

ASP computes the highest quality 3D terrain if used with images map-projected onto a low-resolution DEM that is
used as an initial guess. This process is described in Section 5.1.7.

4.3 Handling CCD Boundary Artifacts

DigitalGlobe/Maxar WorldView images [Glo] may exhibit slight subpixel artifacts which manifest themselves as dis-
continuities in the 3D terrain obtained using ASP. We provide a tool named wv_correct, that can largely correct
such artifacts for World View-1 and WorldView-2 images for most TDI. It can be invoked as follows:

> wv_correct image_in.ntf image.xml image_out.tif

The corrected images can be used just as the originals, and the camera models do not change. When working with
such images, we recommend that CCD artifact correction happen first, on original un-projected images. Afterward
images can be mosaicked with dg_mosaic, map-projected, and the resulting data used to run stereo and create terrain
models.

This tool is described in Section 13.49, and an example of using it is in Fig. 4.2.

Fig. 4.2: Example of a hill-shaded terrain obtained using stereo without (left) and with (right) CCD boundary artifact
corrections applied using wv_correct.

Another source of artifacts in Digital Globe images is jitter. ASP has some logic for dealing with it but it is not ready
for production use at this stage. See (Section 12.1).

4.4 Dealing with Terrain Lacking Large-Scale Features

Stereo Pipeline’s approach to performing correlation is a two-step pyramid algorithm, in which low-resolution versions
of the input images are created, the disparity map (output_prefix-D_sub.tif) is found, and then this disparity
map is refined using increasingly higher-resolution versions of the input images (Section 7.2).

This approach usually works quite well for rocky terrain but may fail for snowy landscapes, whose only features may
be small-scale grooves or ridges sculpted by wind (so-called zastrugi) that disappear at low resolution.

Stereo Pipeline handles such terrains by using a tool named sparse_disp to create output_prefix-D_sub.
tif at full resolution, yet only at a sparse set of pixels for reasons of speed. This low-resolution disparity is then
refined as earlier using a pyramid approach.
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Fig. 4.3: Example of a difficult terrain obtained without (left) and with (right) sparse_disp. (In these DEMs there
is very little elevation change, hence the flat appearance.)

This mode can be invoked by passing to stereo the option --corr-seed-mode 3. Also, during pyramid correla-
tion it is suggested to use somewhat fewer levels than the default --corr-max-levels 5, to again not subsample
the images too much and lose the features.

Here is an example:

> stereo -t dg --corr-seed-mode 3 --corr-max-levels 2 \
left_mapped.tif right_mapped.tif \
12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \
12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \
dg/dg srtm_53_07.tif

If sparse_disp is not working well for your images you may be able to improve its results by experimenting with
the set of sparse_disp options which can be passed into stereo through the --sparse-disp-options
parameter. sparse_disp has so far only been tested with affineepipolar image alignment so you may not
get good results with other alignment methods.

The sparse_disp tool is written in Python, and it depends on a version of GDAL that is newer than what we support
in ASP and on other Python modules that we don’t ship. It is suggested to to use the Conda Python management system
at

https://docs.conda.io/en/latest/miniconda.html

to install these dependencies. This can be done as follows:

conda create --name sparse_disp -c conda-forge python=3.6 gdal
conda activate sparse_disp
conda install -c conda-forge scipy pyfftw

Then set:

export ASP_PYTHON_MODULES_PATH=$HOME/miniconda3/envs/sparse_disp/lib/python3.6/site-
↪→packages
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if you used the default installation path for conda before running stereo.

It is very important to note that if GDAL is fetched from a different repository than conda-forge, one may run into
issues with dependencies not being correct and then it will fail at runtime.

4.5 Processing Multi-Spectral Images

In addition to panchromatic (grayscale) images, the DigitalGlobe/Maxar satellites also produce lower-resolution multi-
spectral (multi-band) images. Stereo Pipeline is designed to process single-band images only. If invoked on multi-
spectral data, it will quietly process the first band and ignore the rest. To use one of the other bands it can be singled
out by invoking dg_mosaic (Section 4.1) with the --band <num> option. We have evaluated ASP with Digital-
Globe/Maxar’s multi-spectral images, but support for it is still experimental. We recommend using the panchromatic
images whenever possible.
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CHAPTER

FIVE

THE NEXT STEPS

This chapter will discuss in more detail ASP’s stereo process and other tools available to either pre-process the input
images/cameras or to manipulate stereo’s outputs, both in the context of planetary ISIS data and for Earth images.
This includes how to (a) customize stereo’s settings (b) use point2dem to create 3D terrain models, (c) visualize
the results, (d) align the obtained point clouds to another data source, (e) perform 3D terrain adjustments in respect to
a geoid, etc.

5.1 Stereo Pipeline in more detail

5.1.1 Choice of stereo algorithm

The most important choice a user has to make when running ASP is the stereo algorithm to use. By default, ASP runs
as if invoked with:

stereo --alignment-method affineepipolar \
--stereo-algorithm asp_bm --subpixel-mode 1 \
<other options>

This invokes block-matching stereo with parabola subpixel mode, which can be fast but not of high quality. The best
results are likely produced with:

parallel_stereo --alignment-method affineepipolar \
--stereo-algorithm asp_mgm --subpixel-mode 3 \
<other options>

which uses ASP’s implementation of MGM (Section 15.2).

ASP also implements local alignment, when the input images are split into tiles (with overlap) and locally aligned.
This makes it possible to use third-party algorithms in addition to the ones ASP implements.

This mode is still in development, and best results with it, for the moment, are obtained with ASP’s own MGM
algorithm, if invoked as follows:

parallel_stereo --alignment-method local_epipolar \
--stereo-algorithm asp_mgm \
<other options>

ASP also ships with the following third-party stereo algorithms: MGM (original author implementation), OpenCV
SGBM, LIBELAS, MSMW, MSMW2, and OpenCV BM. For more details see Section 5.1.2.

For example, the external MGM implementation can be called as:
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parallel_stereo --alignment-method local_epipolar \
--stereo-algorithm mgm \
--corr-tile-size 512 --sgm-collar-size 256 \
<other options>

As before, this mode is still experimental.

Above we used tiles of size 512 pixels with an extra padding of 256 pixels on each side, for a total size of 1024 pixels,
to avoid using too much memory. The defaults in parallel_stereo are double these values, which work well with
ASP’s MGM which is more conservative with its use of memory but can be too much for this other implementation.

It is suggested to not specify here --subpixel-mode, in which case it will use MGM’s own implementation. Using
--subpixel-mode 3 will refine that result using ASP’s subpixel implementation. Using --subpixel-mode
2 will be much slower but likely produce even better results.

Next we will discuss more advanced parameters which rarely need to be set in practice.

5.1.2 Setting options in the stereo.default file

The stereo program can use a stereo.default file that contains settings that affect the stereo reconstruction
process. Its contents can be altered for your needs; details are found in Section 14. You may find it useful to save
multiple versions of the stereo.default file for various processing needs. If you do this, be sure to specify the
desired settings file by invoking stereo with the -s option. If this option is not given, the stereo program will
search for a file named stereo.default in the current working directory. If stereo does not find stereo.
default in the current working directory and no file was given with the -s option, stereo will assume default
settings and continue.

An example stereo.default file is available in the top-level directory of ASP. The actual file has a lot of com-
ments to show you what options and values are possible. Here is a trimmed version of the important values in that
file.

alignment-method affineepipolar
stereo-algorithm asp_bm
cost-mode 2
corr-kernel 21 21
subpixel-mode 1
subpixel-kernel 21 21

All these options can be overridden from the command line, as described in Section 5.1.5.

Alignment method

For raw images, alignment is always necessary, as the left and right images are from different perspectives. Sev-
eral alignment methods are supported, including local_epipolar, affineepipolar and homography (see
Section 14.1.2 for details).

Alternatively, stereo can be performed with map-projected images (Section 5.1.7). In effect we take a smooth low-
resolution terrain and map both the left and right raw images onto that terrain. This automatically brings both images
into the same perspective, and as such, for map-projected images the alignment method is always set to none.
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Stereo algorithms

ASP can invoke several algorithms for doing stereo, some internally implemented, some collected from the community,
and the user can add their own algorithms as well (Section 15.8).

The list of algorithms is as follows. (See Section 15 for a full discussion.)

Algorithms implemented in ASP

asp_bm (or specify the value ‘0’) The ASP implementation of Block Matching. Search in the right image for the
best match for a small image block in the left image. This is the fastest algorithm and works well for similar
images with good texture coverage. How to set the block (kernel) size and subpixel mode is described further
down. See also Section 15.2.

asp_sgm (or specify the value ‘1’) The ASP implementation of the Semi-Global Matching (SGM) algorithm
[Hirschmuller08]. This algorithm is slow and has high memory requirements but it performs better in images
with less texture. See Section 15.2 for important details on using this algorithm.

asp_mgm (or specify the value ‘2’) The ASP implementation of the More Global Matching (MGM) variant of the
SGM algorithm [FDFM15] to reduce high frequency artifacts in the output image at the cost of increased run
time. See Section 15.2 for important details on using this algorithm.

asp_final_mgm (or specify the value ‘3’) Use MGM on the final resolution level and SGM on preceding resolution
levels. This produces a result somewhere in between the pure SGM and MGM options.

External implementations (shipped with ASP)

mgm The MGM implementation by its authors. See Section 15.3.

opencv_sgbm Semi-global block-matching algorithm from OpenCV 3. See Section 15.4.

libelas The LIBELAS algorithm [GRU10]. See Section 15.5.

msmw and msmw2 Multi-Scale Multi-Window algorithm (two versions provided). See Section 15.6.

opencv_bm Classical block-matching algorithm from OpenCV 3. See Section 15.7.

Correlation parameters

The second and third lines in stereo.default define what correlation metric (normalized cross correlation) we’ll
be using and how big the template or kernel size should be (21 pixels square). A pixel in the left image will be matched
to a pixel in the right image by comparing the windows of this size centered at them.

Making the kernel sizes smaller, such as 15 × 15, or even 11 × 11, may improve results on more complex features,
such as steep cliffs, at the expense of perhaps introducing more false matches or noise.

These options only to the algorithms implemented in ASP (those whose name is prefixed with asp_). For externally
implemented algorithms, any options to them can be passed as part of the stereo-algorithm field, as discussed
in Section 15.
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Subpixel refinement parameters

A highly critical parameter in ASP is the value of subpixel-mode, on the fourth line. When set to 1, stereo
performs parabola subpixel refinement, which is very fast but not very accurate. When set to 2, it produces very
accurate results, but it is about an order of magnitude slower. When set to 3, the accuracy and speed will be somewhere
in between the other methods.

For the algorithms not implemented in ASP itself, not specifying this field will use each algorithm’s own subpixel
mode.

The fifth line sets the kernel size to use during subpixel refinement (also 21 pixels square).

Search range determination

Using these settings alone, ASP will attempt to work out the minimum and maximum disparity it will search for
automatically. However if you wish to, you can explicitly set the extent of the search range by adding the option:

corr-search -80 -2 20 2

It is suggested that this setting be used very rarely. More details about this option and the inner workings of stereo
correlation can be found in Section 7.

5.1.3 Performing stereo correlation

As already mentioned, the stereo program can be invoked for ISIS images as:

ISIS> stereo left_image.cub right_image.cub \
-s stereo.default results/output

For DigitalGlobe/Maxar images the cameras need to be specified separately:

> stereo left.tif right.tif left.xml right.xml \
-s stereo.default results/output

As stated in Section 3, the string results/output is arbitrary, and in this case we will simply make all outputs go
to the results directory.

When stereo finishes, it will have produced a point cloud image. Section 5.2 describes how to convert it to a digital
elevation model (DEM) or other formats.

The stereo command can also take multiple input images, performing multi-view stereo (Section 5.1.8).

5.1.4 Running the GUI frontend

The stereo_gui program is a GUI frontend to stereo. It is invoked with the same options as stereo. It displays
the input images, and makes it possible to zoom in and select smaller regions to run stereo on. The GUI is described
in Section 13.47.
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Fig. 5.1: These are the four viewable .tif files created by the stereo program. On the left are the two aligned,
pre-processed images: (results/output-L.tif and results/output-R.tif). The next two are mask
images (results/output-lMask.tif and results/output-rMask.tif), which indicate which pixels in
the aligned images are good to use in stereo correlation. The image on the right is the “Good Pixel map”, (results/
output-GoodPixelMap.tif), which indicates (in gray) which were successfully matched with the correlator,
and (in red) those that were not matched.
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5.1.5 Specifying settings on the command line

All the settings given via the stereo.default file can be over-ridden from the command line. Just add a dou-
ble hyphen (--) in front the option’s name and then fill out the option just as you would in the configuration file.
For options in the stereo.default file that take multiple numbers, they must be separated by spaces (like
‘corr-kernel 25 25’) on the command line. Here is an example in which we override the search range and
subpixel mode from the command line.

ISIS> stereo E0201461.map.cub M0100115.map.cub \
-s stereo.map --corr-search -70 -4 40 4 \
--subpixel-mode 0 results/output

5.1.6 Stereo on multiple machines

If the input images are really large it may desirable to distribute the work over several computing nodes. ASP provides
a tool named parallel_stereo for that purpose. Its usage is described in Section 13.38.

5.1.7 Running stereo with map-projected images

The way stereo correlation works is by matching a neighborhood of each pixel in the left image to a similar neigh-
borhood in the right image. This matching process can fail or become unreliable if the two images are too different,
which can happen for example if the perspectives of the two cameras are very different or the underlying terrain has
steep portions. This will result in ASP producing terrains with noise or missing data.

ASP can mitigate this by map-projecting the left and right images onto some pre-existing low-resolution smooth terrain
model without holes, and using the output images to do stereo. In effect, this makes the images much more similar
and more likely for stereo correlation to succeed.

In this mode, ASP does not create a terrain model from scratch, but rather uses an existing terrain model as an initial
guess, and improves on it.

For Earth, an existing terrain model can be, for example, NASA SRTM, GMTED2010, USGS’s NED data, or NGA’s
DTED data. There exist pre-made terrain models for other planets as well, for example the Moon LRO LOLA global
DEM and the Mars MGS MOLA DEM.

Alternatively, a low-resolution smooth DEM can be obtained by running ASP itself as described in previous sections.
In such a run, subpixel mode may be set to parabola (subpixel-mode 1) for speed. To make it sufficiently coarse
and smooth, the resolution can be set to about 40 times coarser than either the default point2dem resolution or
the resolution of the input images. If the resulting DEM turns out to be noisy or have holes, one could change in
point2dem the search radius factor, use hole-filling, invoke more aggressive outlier removal, and erode pixels at the
boundary (those tend to be less reliable). Alternatively, holes can be filled with dem_mosaic.

The tool used for map-projecting the images is called mapproject (Section 13.32). It is very important to specify
correctly the output resolution (the --tr option for mapproject) when creating map-projected images. For ex-
ample, if the input images are about 1 meter/pixel, the same number should be used in mapproject (if the desired
projection is in degrees, this value should be converted to degrees). If the output resolution is not correct, there will be
artifacts in the stereo results.

Some experimentation on a small area may be necessary to obtain the best results. Once images are map-projected,
they can be cropped to a small shared region using gdal_translate -projwin and then stereo with these clips
can be invoked.

34 Chapter 5. The next steps



Ames Stereo Pipeline Documentation, Release 3.0.0

Example for ISIS images

Fig. 5.2: A DEM obtained using plain stereo (left) and stereo with map-projected images (right). Their quality will be
comparable for relatively flat terrain and the second will be much better for rugged terrain. The right image has some
artifacts, but those are limited to areas close to the boundary.

In this example we illustrate how to run stereo with map-projected images for ISIS data. We start with LRO NAC
Lunar images M1121224102LE and M1121209902LE from ASU’s LRO NAC web site (http://lroc.sese.asu.edu).
We convert them to ISIS cubes using the ISIS program lronac2isis, then we use the ISIS tools spiceinit,
lronaccal, and lrnonacecho to update the SPICE kernels and to do radiometric and echo correction. We name
the two obtained .cub files left.cub and right.cub.

Here we decided to run ASP to create the low-resolution DEM needed for map-projection, rather than get them from
an external source. For speed, we process just a small portion of the images:

parallel_stereo left.cub right.cub \
--left-image-crop-win 1984 11602 4000 5000 \
--right-image-crop-win 3111 11027 4000 5000 \
--job-size-w 1024 --job-size-h 1024 \
--subpixel-mode 1 \
run_nomap/run

(the crop windows can be determined using stereo_gui). The input images have resolution of about 1 meter, or
3.3× 10−5 degrees on the Moon. We create the low-resolution DEM using a resolution 40 times as coarse, so we use
a grid size of 0.0013 degrees (we use degrees since the default point2dem projection invoked here is longlat).

point2dem --search-radius-factor 5 --tr 0.0013 run_nomap/run-PC.tif

As mentioned earlier, some tweaks to the parameters used by point2dem may be necessary for this low-resolution
DEM to be smooth enough and with no holes.

Note that we used --search-radius-factor 5 to expand the DEM a bit, to counteract future erosion in stereo
due to the correlation kernel size.

If this terrain is close to the poles, say within 25 degrees of latitude, it is advised to use a stereographic projection,
centered either at the nearest pole, or close to the center of the current DEM. Its center’s longitude and latitude can be
found with gdalinfo -stats, which can then be passed to point2dem such as:
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point2dem --stereographic --proj-lon <lon_ctr> --proj-lat <lat_ctr> ...

By calling gdalinfo -proj4, the PROJ.4 string of the obtained DEM can be found, which can be used in map-
projection later, and with the resolution switched to meters from degrees (see Section 5.1.7 for more details).

Next, we map-project the images onto this DEM, using the original resolution of 3.3× 10−5 degrees:

mapproject --tr 0.000033 run_nomap/run-DEM.tif left.cub left_proj.tif \
--t_projwin 3.6175120 25.5669989 3.6653695 25.4952127

mapproject --tr 0.000033 run_nomap/run-DEM.tif right.cub right_proj.tif \
--t_projwin 3.6175120 25.5669989 3.6653695 25.4952127

Notice that we restricted the area of computation using --t_projwin to again make the process faster.

Next, we do stereo with these map-projected images:

parallel_stereo --job-size-w 1024 --job-size-h 1024 \
--subpixel-mode 3 \
left_proj.tif right_proj.tif left.cub right.cub \
run_map/run run_nomap/run-DEM.tif

Notice that even though we use map-projected images, we still specified the original images as the third and fourth
arguments. That because we need the camera information from those files. The fifth argument is the output prefix,
while the sixth is the low-resolution DEM we used for map-projection. We have used here --subpixel-mode 3
as this will be the final point cloud and we want the increased accuracy.

Lastly, we create a DEM at 1 meter resolution:

point2dem --nodata-value -32768 --tr 0.000033 run_map/run-PC.tif

Note here that we could have used a coarser resolution for the final DEM, such as 4 meters/pixel, since we won’t see
detail at the level of 1 meter in this DEM, as the stereo process is lossy. This is explained in more detail in Section
13.41.2.

In Section 5.1.7 we show the effect of using map-projected images on accuracy of the final DEM.

It is important to note that we could have map-projected the images using the ISIS tool cam2map, as described in
Section 3.2.2. The current approach could be preferable since it allows us to choose the DEM to map-project onto,
and it is much faster, since ASP’s mapproject uses multiple processes, while cam2map is restricted to one process
and one thread.

Example for DigitalGlobe/Maxar images

In this section we will describe how to run stereo with map-projected images for DigitalGlobe/Maxar cameras for
Earth. The same process can be used with very minor modifications for any satellite images that use the the RPC
camera model. All that is needed is to replace the stereo session when invoking stereo below with rpcmaprpc
from dgmaprpc.

Unlike the previous section, here we will use an external DEM to map-project onto, rather than creating our own. We
will use a variant of NASA SRTM data with no holes. Other choices have been mentioned earlier.

It is important to note that ASP expects the input low-resolution DEM to be in reference to a datum ellipsoid, such as
WGS84 or NAD83. If the DEM is in respect to either the EGM96 or NAVD88 geoids, the ASP tool dem_geoid can
be used to convert the DEM to WGS84 or NAD83 (Section 13.15). (The same tool can be used to convert back the
final output ASP DEM to be in reference to a geoid, if desired.)

Not applying this conversion might not properly negate the parallax seen between the two images, though it will not
corrupt the triangulation results. In other words, sometimes one may be able to ignore the vertical datums on the input
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but we do not recommend doing that. Also, you should note that the geoheader attached to those types of files usually
does not describe the vertical datum they used. That can only be understood by careful reading of your provider’s
documents.

In this example we use as an input low-resolution DEM the file srtm_53_07.tif, a 90 meter resolution tile from
the CGIAR-CSI modification of the original NASA SRTM product [fSI]. The NASA SRTM square for this example
spot in India is N26E080.

Below are the commands for map-projecting the input and then running through stereo. You can use any projection you
like as long as it preserves detail in the images. Note that the last parameter in the stereo call is the input low-resolution
DEM. The dataset is the same as the one used in Section 4.1.

For best quality results, the resolution used for mapprojection should be very similar to the documented ground sample
distance (GSD) for your camera.

Fig. 5.3: Example colorized height map and ortho image output.

Commands

mapproject -t rpc --t_srs "+proj=eqc +units=m +datum=WGS84" \
--tr 0.5 srtm_53_07.tif \
12FEB12053305-P1BS_R2C1-052783824050_01_P001.TIF \
12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \
left_mapped.tif

mapproject -t rpc --t_srs "+proj=eqc +units=m +datum=WGS84" \
--tr 0.5 srtm_53_07.tif \
12FEB12053341-P1BS_R2C1-052783824050_01_P001.TIF \
12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \
right_mapped.tif

stereo -t dgmaprpc --subpixel-mode 1 --alignment-method none \
left_mapped.tif right_mapped.tif \
12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \
12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \
dg/dg srtm_53_07.tif

If the --t_srs option is not specified, it will be read from the low-resolution input DEM.

The complete list of options for mapproject is described in Section 13.32.

In the stereo command, we have used subpixel-mode 1 which is less accurate but reasonably fast. We have
also used alignment-method none, since the images are map-projected onto the same terrain with the same res-
olution, thus no additional alignment is necessary. More details about how to set these and other stereo parameters
can be found in Section 5.1.2.
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It is important to note here that any DigitalGlobe/Maxar camera file has two models in it, the exact linescan model
(which we name DG), and its RPC approximation. Above, we have used the approximate RPC model for map-
projection, since map-projection is just a pre-processing step to make the images more similar to each other, this
step will be undone during stereo triangulation, and hence using the RPC model is good enough, while being much
faster than the exact DG model. At the stereo stage, we see above that we invoked the dgmaprpc session, which
suggests that we have used the RPC model during map-projection, but we would like to use the accurate DG model
when performing actual triangulation from the cameras to the ground.

RPC and Pinhole camera models

Map-projected images can also be used with RPC and Pinhole camera models. The mapproject command needs to
be invoked with -t rpc and -t pinhole respectively. As earlier, when invoking stereo the the first two argu-
ments should be the map-projected images, followed by the camera models, output prefix, and the name of the DEM
used for map-projection. The session name passed to stereo should be rpcmaprpc and pinholemappinhole
respectively.

5.1.8 Multi-view stereo

ASP supports multi-view stereo at the triangulation stage. This mode is somewhat experimental, and not used widely.
We have obtained higher quality results by doing pairwise stereo and merging the result, as described later on in this
section.

In the multiview scenario, the first image is set as reference, disparities are computed from it to all the other images,
and then joint triangulation is performed [SSL01]. A single point cloud is generated with one 3D point for each pixel
in the first image. The inputs to multi-view stereo and its output point cloud are handled in the same way as for
two-view stereo (e.g., inputs can be map-projected, the output can be converted to a DEM, etc.).

It is suggested that images be bundle-adjusted (Section 8.2) before running multi-view stereo.

Example (for ISIS with three images):

stereo file1.cub file2.cub file3.cub results/run

Example (for DigitalGlobe/Maxar data with three map-projected images):

stereo file1.tif file2.tif file3.tif file1.xml file2.xml file3.xml \
results/run input-DEM.tif

The parallel_stereo tool can also be used with multiple images (Section 13.38).

For a sequence of images, multi-view stereo can be run several times with each image as a reference, and the obtained
point clouds combined into a single DEM using point2dem (Section 13.41).

The ray intersection error, the fourth band in the point cloud file, is computed as twice the mean of distances from the
optimally computed intersection point to the individual rays. For two rays, this agrees with the intersection error for
two-view stereo which is defined as the minimal distance between rays. For multi-view stereo this error is much less
amenable to interpretation than for two-view stereo, since the number of valid rays corresponding to a given feature
can vary across the image, which results in discontinuities in the intersection error.
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Other ways of combining multiple images

As an alternative to multi-view stereo, point clouds can be generated from multiple stereo pairs, and then a single
DEM can be created with point2dem (Section 5.2.2). Or, multiple DEMs can be created, then combined into a
single DEM with dem_mosaic (Section 13.16).

In both of these approaches, the point clouds could be registered to a trusted dataset using pc_align before creating
a combined terrain model (Section 5.2.5).

The advantage of creating separate DEMs and then merging them (after alignment) with dem_mosaic, compared
to multiview triangulation, is that this approach will not create visible seams, while likely it will still increase the
accuracy compared to the individual input DEMs.

5.1.9 Diagnosing problems

Once invoked, stereo proceeds through several stages that are detailed in Section 13.46.1. Intermediate and final
output files are generated as it goes. See Section 16, page for a comprehensive listing. Many of these files are useful
for diagnosing and debugging problems. For example, as Fig. 5.1 shows, a quick look at some of the TIFF files in the
results/ directory provides some insight into the process.

Perhaps the most accessible file for assessing the quality of your results is the good pixel image (results/
output-GoodPixelMap.tif). If this file shows mostly good, gray pixels in the overlap area (the area that is
white in both the results/output-lMask.tif and results/output-rMask.tif files), then your results
are just fine. If the good pixel image shows lots of failed data, signified by red pixels in the overlap area, then you
need to go back and tune your stereo.default file until your results improve. This might be a good time to make
a copy of stereo.default as you tune the parameters to improve the results.

Whenever stereo, point2dem, and other executables are run, they create log files in given tool’s results directory,
containing a copy of the configuration file, the command that was run, your system settings, and tool’s console output.
This will help track what was performed so that others in the future can recreate your work.

Another handy debugging tool is the disparitydebug program, which allows you to generate viewable versions
of the intermediate results from the stereo correlation algorithm. disparitydebug converts information in the dis-
parity image files into two TIFF images that contain horizontal and vertical components of the disparity (i.e. matching
offsets for each pixel in the horizontal and vertical directions). There are actually three flavors of disparity map: the
-D.tif, the -RD.tif, and -F.tif. You can run disparitydebug on any of them. Each shows the disparity
map at the different stages of processing.

> disparitydebug results/output-F.tif

If the output H and V files from disparitydebug look good, then the point cloud image is most likely ready for
post-processing. You can proceed to make a mesh or a DEM by processing results/output-PC.tif using the
point2mesh or point2dem tools, respectively.

Fig. 5.4 shows the outputs of disparitydebug.

If the input images are map-projected (georeferenced) and the alignment method is none, all images output by stereo
are georeferenced as well, such as GoodPixelMap, D_sub, disparity, etc. As such, all these data can be overlayed in
stereo_gui. disparitydebug also preserves any georeference.
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Fig. 5.4: Disparity images produced using the disparitydebug tool. The two images on the left are the
results/output-D-H.tif and results/output-D-V.tif files, which are normalized horizontal and
vertical disparity components produced by the disparity map initialization phase. The two images on the right are
results/output-F-H.tif and results/output-F-V.tif, which are the final filtered, sub-pixel-refined
disparity maps that are fed into the Triangulation phase to build the point cloud image. Since these MOC images
were acquired by rolling the spacecraft across-track, most of the disparity that represents topography is present in the
horizontal disparity map. The vertical disparity map shows disparity due to “wash-boarding,” which is not from topog-
raphy but from spacecraft movement. Note however that the horizontal and vertical disparity images are normalized
independently. Although both have the same range of gray values from white to black, they represent significantly
different absolute ranges of disparity.
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5.1.10 Dealing with long run-times

If stereo_corr takes unreasonably long, it may have encountered a portion of the image where, due to noise
(such as clouds, shadows, etc.) the determined search range is much larger than what it should be. The option
--corr-timeout integer can be used to limit how long each 1024 × 1024 pixel tile can take. A good value
here could be 300 (seconds) or more if your terrain is expected to have large height variations.

5.2 Visualizing and manipulating the results

When stereo finishes, it will have produced a point cloud image. At this point, many kinds of data products can be
built from the results/output-PC.tif point cloud file.

Fig. 5.5: A visualization of a mesh.

5.2.1 Building a 3D mesh model

The point2mesh command (Section 13.43) can be used to create a 3D textured mesh in the plain text .obj format
that can be opened in a mesh viewer such as MeshLab. The point2mesh program takes the point cloud file and the
left normalized image as inputs:

> point2mesh results/output-PC.tif results/output-L.tif

An example visualization is shown in Fig. 5.5.

If you already have a DEM and an ortho image (Section 5.2.2), they can be used to build a mesh as well, in the same
way as done above:

> point2mesh results/output-DEM.tif results/output-DRG.tif
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5.2.2 Building a digital elevation model and ortho image

The point2dem program (page ) creates a Digital Elevation Model (DEM) from the point cloud file.

> point2dem results/output-PC.tif

The resulting TIFF file is map-projected and will contain georeference information stored as GeoTIFF tags.

The tool will infer the datum and projection from the input images, if present. You can explicitly specify a coor-
dinate system (e.g., mercator, sinusoidal) and a reference spheroid (i.e., calculated for the Moon, Mars, or Earth).
Alternatively, the datum semi-axes can be set or a PROJ.4 string can be passed in.

> point2dem -r mars results/output-PC.tif

The output DEM will be named results/output-DEM.tif. It can be imported into a variety of GIS platforms.
The DEM can be transformed into a hill-shaded image for visualization (Section 5.2.9). Both the DEM itself and its
hill-shaded version can be examined in stereo_gui.

The point2dem program can also be used to orthoproject raw satellite images onto the DEM. To do this, invoke
point2dem just as before, but add the --orthoimage option and specify the use of the left image file as the
texture file to use for the projection:

> point2dem results/output-PC.tif --orthoimage results/output-L.tif

The texture file must always be specified after the point cloud file in this command. See Fig. 5.6 on the right for the
output image.

To fill in any holes in the obtained orthoimage, one can invoke it with a larger value of the grid size (the --tr option)
and/or with a variation of the options:

--no-dem --orthoimage-hole-fill-len 100 --search-radius-factor 2

The point2dem program is also able to accept output projection options the same way as the tools in GDAL. Well-
known EPSG, IAU2000 projections, and custom PROJ.4 strings can applied with the target spatial reference set flag,
--t_srs. If the target spatial reference flag is applied with any of the reference spheroid options, the reference
spheroid option will overwrite the datum defined in the target spatial reference set. The following examples produce
the same output. However, the last two results will also show correctly the name of the datum in the geoheader, not
just the values of its axes.

point2dem --t_srs "+proj=longlat +a=3396190 +b=3376200"
results/output-PC.tif

point2dem --t_srs http://spatialreference.org/ref/iau2000/49900/ \
results/output-PC.tif

point2dem --t_srs 'GEOGCS["Geographic Coordinate System",
DATUM["D_Mars_2000",
SPHEROID["Mars_2000_IAU_IAG",3396190,169.894447223611]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]' results/output-PC.tif

The point2dem program can be used in many different ways. The complete documentation is in Section 13.41.
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Fig. 5.6: The image on the left is a normalized DEM (generated using point2dem’s -n option), which shows low
terrain values as black and high terrain values as white. The image on the right is the left input image projected onto
the DEM (created using the --orthoimage option to point2dem).
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5.2.3 Orthorectification of an image from a different source

If you have already obtained a DEM, using ASP or some other approach, and have an image and camera pair which
you would like to overlay on top of this terrain, use the mapproject tool (Section 13.32).

5.2.4 Correcting camera positions and orientations

The bundle_adjust program can be used to adjust the camera positions and orientations before running stereo.
These adjustments only makes the cameras self-consistent. For the adjustments to be absolute, it is necessary to use
bundle_adjust with ground control points. This tool is described in Section 13.5.

5.2.5 Alignment to point clouds from a different source

Often the 3D terrain models output by stereo (point clouds and DEMs) can be intrinsically quite accurate yet their
actual position on the planet may be off by several meters or several kilometers, depending on the spacecraft. This can
result from small errors in the position and orientation of the satellite cameras taking the pictures.

Such errors can be corrected in advance using bundle adjustment, as described in the previous section. That requires
using ground control points, that may not be easy to collect. Alternatively, the images and cameras can be used as they
are, and the absolute position of the output point clouds can be corrected in post-processing. For that, ASP provides
a tool named pc_align. It aligns a 3D terrain to a much more accurately positioned (if potentially sparser) dataset.
Such datasets can be made up of GPS measurements (in the case of Earth), or from laser altimetry instruments on
satellites, such as ICESat/GLASS for Earth, LRO/LOLA on the Moon, and MGS/MOLA on Mars. Under the hood,
pc_align uses the Iterative Closest Point algorithm (ICP) (both the point-to-plane and point-to-point flavors are
supported, and with point-to-point ICP it is also possible to solve for a scale change).

The pc_align tool requires another input, an a priori guess for the maximum displacement we expect to see as
result of alignment, i.e., by how much the points are allowed to move when the alignment transform is applied. If not
known, a large (but not unreasonably so) number can be specified. It is used to remove most of the points in the source
(movable) point cloud which have no chance of having a corresponding point in the reference (fixed) point cloud.

Here is how pc_align can be called (the denser cloud is specified first).

> pc_align --max-displacement 200 --datum MOLA \
--save-inv-transformed-reference-points \
--csv-format '1:lon 2:lat 3:radius_m' \
stereo-PC.tif mola.csv

It is important to note here that there are two widely used Mars datums, and if your CSV file has, unlike above, the
heights relative to a datum, the correct datum name must be specified via --datum. Section 13.41.1 talks in more
detail about the Mars datums.

Fig. 5.7 shows an example of using pc_align. The complete documentation for this program is in Section 13.39.

5.2.6 Alignment and orthoimages

Two related issues are discussed here. The first is that sometimes, after ASP has created a DEM, and the left and right
images are map-projected to it, they are shifted in respect to each other. That is due to the errors in camera positions.
To rectify it, one has to run bundle_adjust first, then rerun the stereo and mapprojection tools, with the adjusted
cameras being passed to both via --bundle-adjust-prefix.

Note that this approach will create self-consistent outputs, but not necessarily aligned with pre-existing ground truth.
That we deal with next.
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Fig. 5.7: Example of using pc_align to align a DEM obtained using stereo from CTX images to a set of MOLA
tracks. The MOLA points are colored by the offset error initially (left) and after pc align was applied (right) to the
terrain model. The red dots indicate more than 100 m of error and blue less than 5 m. The pc_align algorithm
determined that by moving the terrain model approximately 40 m south, 70 m west, and 175 m vertically, goodness of
fit between MOLA and the CTX model was increased substantially.
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Once an ASP-generated DEM has been aligned to known ground data using pc_align, it may be desired to create
orthoimages that are also aligned to the ground. That can be accomplished in two ways.

The point2dem --orthoimage approach be used, and one can pass to it the point cloud after alignment and
the L image before alignment (all this tool does is copy pixels from the texture image, so position errors are not a
problem).

Alternatively, one can invoke the mapproject tool again. Yet, there is a challenge, because this tool uses the original
cameras, before alignment, but will project onto the DEM after alignment, so the obtained orthoimage location on the
ground will be wrong.

The solution is to invoke bundle_adjust on the two input images and cameras, while passing to it the transform
obtained from pc_align via the --initial-transform option. This will shift the cameras to the right place,
and then mapproject can be called with the adjusted cameras, using again the --bundle-adjust-prefix
option. If all that is wanted is to shift the cameras, without doing any actual adjustments, the tool can be invoked with
0 iterations.

5.2.7 Creating DEMs Relative to the geoid/areoid

The DEMs generated using point2dem are in reference to a datum ellipsoid. If desired, the dem_geoid program
can be used to convert this DEM to be relative to a geoid/areoid on Earth/Mars respectively. Example usage:

> dem_geoid results/output-DEM.tif

5.2.8 Converting to the LAS format

If it is desired to use the stereo generated point cloud outside of ASP, it can be converted to the LAS file format,
which is a public file format for the interchange of 3-dimensional point cloud data. The tool point2las can be used
for that purpose (Section 13.42). Example usage:

> point2las --compressed -r Earth results/output-PC.tif

5.2.9 Generating color hillshade maps

Once you have generated a DEM file, you can use the colormap and hillshade tools to create colorized and/or
shaded relief images.

To create a colorized version of the DEM, you need only specify the DEM file to use. The colormap is applied to the
full range of the DEM, which is computed automatically. Alternatively you can specify your own min and max range
for the color map.

> colormap results/output-DEM.tif -o hrad-colorized.tif

To create a hillshade of the DEM, specify the DEM file to use. You can control the azimuth and elevation of the light
source using the -a and -e options.

> hillshade results/output-DEM.tif -o hrad-shaded.tif -e 25 -a 300

To create a colorized version of the shaded relief file, specify the DEM and the shaded relief file that should be used:

> colormap results/output-DEM.tif -s hrad-shaded.tif -o hrad-color-shaded.tif

See Fig. 5.8 showing the images obtained with these commands.

The complete documentation for colormap is in Section 13.12, and for hillshade in Section 13.22.
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Fig. 5.8: The colorized DEM, the shaded relief image, and the colorized hillshade.
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5.2.10 Building overlays for Moon and Mars mode in Google Earth

Sometimes it may be convenient to see how the DEMs and orthoimages generated by ASP look on top of existing
images in Google Earth. ASP provides a tool named image2qtree for that purpose. It creates multi-resolution
image tiles and a metadata tree in KML format that can be loaded into Google Earth from your local hard drive or
streamed from a remote server over the Internet.

The image2qtree program can only be used on 8-bit image files with georeferencing information (e.g. grayscale
or RGB GeoTIFF images). In this example, it can be used to process

results/output-DEM-normalized.tif, results/output-DRG.tif, hrad-shaded.tif,
hrad-colorized.tif, and hrad-shaded-colorized.tif.

These images were generated respectively by using point2dem with the -n option creating a normalized DEM, the
--orthoimage option to point2dem which projects the left image onto the DEM, and the images created earlier
with colormap.

Here’s an example of how to invoke this program:

> image2qtree hrad-shaded-colorized.tif -m kml --draw-order 100

Fig. 5.9 shows the obtained KML files in Google Earth.

The complete documentation is in Section 13.25.

5.2.11 Using DERT to visualize terrain models

The open source Desktop Exploration of Remote Terrain (DERT) software tool can be used to explore large digital
terrain models, like those created by the Ames Stereo Pipeline. For more information, visit https://github.com/nasa/
DERT.

5.2.12 Using Blender to visualize meshes

The point2mesh program will create .obj and .mtl files that you can import directly into Blender (https://www.
blender.org/). Remember that .obj files don’t particularly have a way to specify ‘units’ but the ‘units’ of an .obj
file written out by ASP are going to be ‘meters.’ If you open a large .obj model created by ASP (like HiRISE),
you’ll need to remember to move the default viewpoint away from the origin, and extend the clipping distance to a
few thousand (which will be a few kilometers), otherwise it may ‘appear’ that the model hasn’t loaded (because your
viewpoint is inside of it, and you can’t see far enough).

The default step size for point2mesh is 10, which only samples every 10th point, so you may want to read the docu-
mentation which talks more about the -s argument to point2mesh. Depending on how big your model is, even that
might be too small, and I’d be very cautious about using -s 1 on a HiRISE model that isn’t cropped somehow first.

You can also use point2mesh to pull off this trick with terrain models you’ve already made (maybe with SOCET
or something else). Our point2mesh program certainly knows how to read our ASP *-PC.tif files, but it can
also read GeoTIFFs. So if you have a DEM as a GeoTIFF, or an ISIS cube which is a terrain model (you can use
gdal_translate to convert them to GeoTIFFs), then you can run point2mesh on them to get .obj and .mtl
files.
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Fig. 5.9: The colorized hillshade DEM as a KML overlay.
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5.2.13 Using MeshLab to visualize meshes

Alternatively, MeshLab is another program that can view meshes in .obj files. It can be downloaded from:

https://github.com/cnr-isti-vclab/meshlab/releases

and can be installed and run in user’s directory without needing administrative privileges.

5.2.14 Using QGIS to visualize terrain models

The free and open source geographic information system QGIS (https://qgis.org) as of version 3.0 has a 3D Map View
feature that can be used to easily visualize perspective views of terrain models.

After you use point2dem to create a terrain model (the *-DEM.tif file), or both the terrain model and an ortho image
via --orthoimage (the *-DRG.tif file), those files can be loaded as raster data files, and the ‘New 3D Map View’
under the View menu will create a new window, and by clicking on the wrench icon, you can set the DEM file as the
terrain source, and are able to move around a perspective view of your terrain.
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CHAPTER

SIX

TIPS AND TRICKS

Here we summarize, in one place, some insights in how to get the most from ASP, particularly the highest quality
results in the smallest amount of time.

• Ask for help or if you have questions. We’re always glad to share what we know, implement suggestions, and
fix issues (Section 1.4).

• Use the GUI (Section 13.47) to get comfortable with ASP on a small region and to tune parameters (Section
13.47). A solution specific to ISIS images is to crop your stereo pair (using the ISIS crop command being
careful to retain SPICE information, or cam2map4stereo.py for map-projected images) to a small region
of interest.

• The highest quality results with ASP can be obtained with map-projected images (Section 5.1.7).

• Run stereo on multiple machines (Section 13.38).

• Improve the quality of the inputs to get better outputs. Bundle-adjustment can be used to find out the camera
positions more accurately (Section 8.2). CCD artifact correction can be used to remove artifacts from WorldView
images (Section 4.3).

• Align the output point cloud to some known absolute reference with pc_align (Section 5.2.5).

• Remove noise from the output point cloud. During stereo triangulation, points that are further or closer
than given distances from planet center or left camera center can be removed as outliers (Section 14.5).
During DEM generation (Section 13.41), points with large triangulation error can be removed using
--remove-outliers-params. Spikes can be removed with --median-filter-params. Points
close to the boundary, that tend to be less accurate, can be eroded (--erode-length).

• During stereo filtering, islands can be removed with --erode-max-size.

• Remove noise from the low-resolution disparity (D_sub) that can greatly slow down a run using
--rm-quantile-percentile and --rm-quantile-multiple. Some care is needed with these to
not remove too much information.

• Fill holes in output orthoimages for nicer display (also in DEMs), during DEM and orthoimage generation with
point2dem (Section 13.41). Holes in an existing DEM can also be filled using dem_mosaic (Section 13.16).

• To get good results if the images lack large-scale features (such as for ice plains) use a different way to get the
low-resolution disparity (Section 4.4).

• If a run takes unreasonably long, decreasing the timeout parameter may be in order (Section 5.1.10).

• Manually set the search range if the automated approach fails (Section 7.2.2).

• To increase speed, the image pair can be subsampled. For ISIS images, the ISIS reduce command can be
used, while for DigitalGlobe/Maxar data one can invoke the dg_mosaic tool (Section 13.17, though note that
this tool may introduce aliasing). With subsampling, you are trading resolution for speed, so this probably only
makes sense for debugging or “previewing” 3D terrain. That said, subsampling will tend to increase the signal
to noise ratio, so it may also be helpful for obtaining 3D terrain out of noisy, low quality images.
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• Photometric calibration (using the ISIS tools) can be used to improve the input images and hence get higher
quality stereo results.

• If your images have missing or inaccurate camera pose information, and they were acquired with frame (pinhole
cameras), such data can be solved for using structure-from-motion and bundle adjustment (Section 9).

• Shape-from-shading (Section 13.44) can be used to further increase the level of detail of a DEM obtained from
stereo, though this is a computationally expensive process and its results are not easy to validate.

We’ll be happy to add here more suggestions from community’s accumulated wisdom on using ASP.
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CHAPTER

SEVEN

STEREO CORRELATION

In this chapter we will dive much deeper into understanding the core algorithms in the Stereo Pipeline. We start with
an overview of the five stages of stereo reconstruction. Then we move into an in-depth discussion and exposition of
the various correlation algorithms.

The goal of this chapter is to build an intuition for the stereo correlation process. This will help users to identify
unusual results in their DEMs and hopefully eliminate them by tuning various parameters in the stereo.default
file (Section 14). For scientists and engineers who are using DEMs produced with the Stereo Pipeline, this chapter
may help to answer the question, “What is the Stereo Pipeline doing to the raw data to produce this DEM?”

A related question that is commonly asked is, “How accurate is a DEM produced by the Stereo Pipeline?” This chapter
does not yet address matters of accuracy and error, however we have several efforts underway to quantify the accuracy
of Stereo Pipeline-derived DEMs, and will be publishing more information about that shortly. Stay tuned.

The entire stereo correlation process, from raw input images to a point cloud or DEM, can be viewed as a multistage
pipeline as depicted in Fig. 7.1, and detailed in the following sections.

7.1 Pre-processing

The first optional (but recommended) step in the process is least squares Bundle Adjustment, which is described in
detail in Section 8.

Next, the left and right images are roughly aligned using one of the four methods: (1) a homography transform of
the right image based on automated tie-point measurements, (2) an affine epipolar transform of both the left and right
images (also based on tie-point measurements as earlier), the effect of which is equivalent to rotating the original
cameras which took the pictures, (3) a 3D rotation that achieves epipolar rectification (only implemented for Pinhole
sessions for missions like MER or K10 – see Section 10.6 and Section 10.7) or (4) map-projection of both the left
and right images using the ISIS cam2map command or through the more general mapproject tool that works
for any cameras supported by ASP (see Section 5.1.7 for the latter). The first three options can be applied auto-
matically by the Stereo Pipeline when the alignment-method variable in the stereo.default file is set to
affineepipolar, homography, or epipolar, respectively.

The latter option, running cam2map, cam2map4stereo.py, or mapproject must be carried out by the user
prior to invoking the stereo command. Map-projecting the images using ISIS eliminates any unusual distortion in
the image due to the unusual camera acquisition modes (e.g. pitching “ROTO” maneuvers during image acquisition
for MOC, or highly elliptical orbits and changing line exposure times for the , HRSC). It also eliminates some of the
perspective differences in the image pair that are due to large terrain features by taking the existing low-resolution
terrain model into account (e.g. the MOLA, LOLA, NED, or ULCN 2005 models).

In essence, map-projecting the images results in a pair of very closely matched images that are as close to ideal as
possible given existing information. This leaves only small perspective differences in the images, which are exactly
the features that the stereo correlation process is designed to detect.

53



Ames Stereo Pipeline Documentation, Release 3.0.0

Fig. 7.1: Flow of data through the Stereo Pipeline.
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For this reason, we recommend map-projection for pre-alignment of most stereo pairs. Its only cost is longer triangu-
lation times as more math must be applied to work back through the transforms applied to the images. In either case,
the pre-alignment step is essential for performance because it ensures that the disparity search space is bounded to a
known area. In both cases, the effects of pre-alignment are taken into account later in the process during triangulation,
so you do not need to worry that pre-alignment will compromise the geometric integrity of your DEM.

In some cases the pre-processing step may also normalize the pixel values in the left and right images to bring them
into the same dynamic range. Various options in the stereo.default file affect whether or how normalization is
carried out, including individually-normalize and force-use-entire-range. Although the defaults
work in most cases, the use of these normalization steps can vary from data set to data set, so we recommend you refer
to the examples in Section 10 to see if these are necessary in your use case.

Finally, pre-processing can perform some filtering of the input images (as determined by prefilter-mode)
to reduce noise and extract edges in the images. When active, these filters apply a kernel with a sigma of
prefilter-kernel-width pixels that can improve results for noisy images (prefilter-mode must be cho-
sen carefully in conjunction with cost-mode, see Section 14). The pre-processing modes that extract image edges
are useful for stereo pairs that do not have the same lighting conditions, contrast, and absolute brightness [Nis84]. We
recommend that you use the defaults for these parameters to start with, and then experiment only if your results are
sub-optimal.

7.2 Disparity map initialization

Correlation is the process at the heart of the Stereo Pipeline. It is a collection of algorithms that compute correspon-
dences between pixels in the left image and pixels in the right image. The map of these correspondences is called a
disparity map. You can think of a disparity map as an image whose pixel locations correspond to the pixel (u, v) in
the left image, and whose pixel values contain the horizontal and vertical offsets (du, dv) to the matching pixel in the
right image, which is (u+ du, v + dv).

The correlation process attempts to find a match for every pixel in the left image. The only pixels skipped are those
marked invalid in the mask images. For large images (e.g. from HiRISE, , LROC, or WorldView), this is very
expensive computationally, so the correlation process is split into two stages. The disparity map initialization step
computes approximate correspondences using a pyramid-based search that is highly optimized for speed, but trades
resolution for speed. The results of disparity map initialization are integer-valued disparity estimates. The sub-pixel
refinement step takes these integer estimates as initial conditions for an iterative optimization and refines them using
the algorithm discussed in the next section.

We employ several optimizations to accelerate disparity map initialization: (1) a box filter-like accumulator that re-
duces duplicate operations during correlation [Sun02]; (2) a coarse-to-fine pyramid based approach where disparities
are estimated using low-resolution images, and then successively refined at higher resolutions; and (3) partitioning
of the disparity search space into rectangular sub-regions with similar values of disparity determined in the previous
lower resolution level of the pyramid [Sun02].

Naive correlation itself is carried out by moving a small, rectangular template window from the from left image over
the specified search region of the right image, as in Fig. 7.2. The “best” match is determined by applying a cost
function that compares the two windows. The location at which the window evaluates to the lowest cost compared to
all the other search locations is reported as the disparity value. The cost-mode variable allows you to choose one
of three cost functions, though we recommend normalized cross correlation [Men97], since it is most robust to slight
lighting and contrast variations between a pair of images. Try the others if you need more speed at the cost of quality.

Our implementation of pyramid correlation is a little unique in that it is actually split into two levels of pyramid
searching. There is a output_prefix-D_sub.tif disparity image that is computed from the greatly reduced
input images *-L_sub.tif and output_prefix-R_sub.tif. Those “sub” images have their size chosen
so that their area is around 2.25 megapixels, a size that is easily viewed on the screen unlike the raw source im-
ages. The low-resolution disparity image then defines the per thread search range of the higher resolution disparity,
output_prefix-D.tif.
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Fig. 7.2: The correlation algorithm in disparity map initialization uses a sliding template window from the left image
to find the best match in the right image. The size of the template window can be adjusted using the H_KERN
and V_KERN parameters in the stereo.default file, and the search range can be adjusted using the {H,
V}_CORR_{MIN/MAX} parameters.
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This solution is imperfect but comes from our model of multi-threaded processing. ASP processes individual tiles of
the output disparity in parallel. The smaller the tiles, the easier it is to distribute evenly among the CPU cores. The size
of the tile unfortunately limits the max number of pyramid levels we can process. We’ve struck a balance where every
1024 by 1024 pixel area is processed individually in a tile. This practice allows only 5 levels of pyramid processing.
With the addition of the second tier of pyramid searching with output_prefix-D_sub.tif, we are allowed to
process beyond that limitation.

Any large failure in the low-resolution disparity image will be detrimental to the performance of the higher reso-
lution disparity. In the event that the low-resolution disparity is completely unhelpful, it can be skipped by adding
corr-seed-mode 0 in the stereo.default file and using a manual search range (Section 7.2.2). This should
only be considered in cases where the texture in an image is completely lost when subsampled. An example would
be satellite images of fresh snow in the Arctic. Alternatively, output_prefix-D_sub.tif can be computed at a
sparse set of pixels at full resolution, as described in Section 4.4.

An alternative to computing output_prefix-D.tif from sub-sampled images (corr-seed-mode 1) or
skipping it altogether (corr-seed-mode 0), is to compute it from a lower-resolution DEM of the area
(corr-seed-mode 2). In this situation, the low-resolution DEM needs to be specified together with its estimated
error. See Section 14.2 for more detailed information as to how to specify these options. In our experiments, if the
input DEM has a resolution of 1 km, a good value for the DEM error is about 10 m, or higher if the terrain is very
variable.

7.2.1 Debugging Disparity Map Initialization

Never will all pixels be successfully matched during stereo matching. Though a good chunk of the image should be
correctly processed. If you see large areas where matching failed, this could be due to a variety of reasons:

• In regions where the images do not overlap, there should be no valid matches in the disparity map.

• Match quality may be poor in regions of the images that have different lighting conditions, contrast, or specular
properties of the surface.

• Areas that have image content with very little texture or extremely low contrast may have an insufficient signal
to noise ratio, and will be rejected by the correlator.

• Areas that are highly distorted due to different image perspective, such as crater and canyon walls, may ex-
hibit poor matching performance. This could also be due to failure of the preprocessing step in aligning the
images. The correlator can not match images that are rotated differently from each other or have different
scale/resolution. Mapprojection is used to at least partially rectify these issues (Section 5.1.7).

Bad matches, often called “blunders” or “artifacts” are also common, and can happen for many of the same reasons
listed above. The Stereo Pipeline does its best to automatically detect and eliminate these blunders, but the effective-
ness of these outlier rejection strategies does vary depending on the quality of the input images.

When tuning up your stereo.default file, you will find that it is very helpful to look at the raw output of
the disparity map initialization step. This can be done using the disparitydebug tool, which converts the
output_prefix-D.tif file into a pair of normal images that contain the horizontal and vertical components
of disparity. You can open these in a standard image viewing application and see immediately which pixels were
matched successfully, and which were not. Stereo matching blunders are usually also obvious when inspecting these
images. With a good intuition for the effects of various stereo.default parameters and a good intuition for
reading the output of disparitydebug, it is possible to quickly identify and address most problems.

If you are seeing too many holes in your disparity images, one option that may give good results is to increase the size
of the correlation kernel used by stereo_corr with the -corr-kernel option. Increasing the kernel size will
increase the processing time but should help fill in regions of the image where no match was found.
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Fig. 7.3: The effect of increasing the correlation kernel size from 35 (left) to 75 (right). This location is covered in
snow and several regions lack texture for the correlator to use but a large kernel increases the chances of finding useful
texture for a given pixel.

Fig. 7.4: The effect of using the rm-quantile filtering option in stereo_corr. In the left image there are a
series of high disparity “islands” at the bottom of the image. In the right image quantile filtering has removed those
islands while leaving the rest of the image intact.
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7.2.2 Search Range Determination

In some circumstances, the low-resolution disparity D_sub.tif may fail to get computed, or it may be inaccurate.
This can happen for example if only very small features are present in the original images, and they disappear during
the resampling that is necessary to obtain D_sub.tif. In this case, it is possible to set corr-seed-mode to 0,
and manually set a search range to use for full-resolution correlation via the parameter corr-search. In stereo.
default this parameter’s entry will look like:

corr-search -80 -2 20 2

The exact values to use with this option you’ll have to discover yourself. The numbers right of corr-search
represent the horizontal minimum boundary, vertical minimum boundary, horizontal maximum boundary, and finally
the horizontal maximum boundary within which we will search for the disparity during correlation.

It can be tricky to select a good search range for the stereo.default file. That’s why the best way is to let
stereo perform an automated guess for the search range. If you find that you can do a better estimate of the search
range, take look at the intermediate disparity images using the disparitydebug program to figure out which search
directions can be expanded or contracted. The output images will clearly show good data or bad data depending on
whether the search range is correct.

The worst case scenario is to determine the search range manually. For example, for ISIS images, both images could
be opened in qview and the coordinates of points that can be matched visually can be compared. Subtract line,sample
locations in the first image from the coordinates of the same feature in the second image, and this will yield offsets
that can be used in the search range. Make several of these offset measurements and use them to define a line,sample
bounding box, then expand this by 50% and use it for corr-search. This will produce good results in most images.

Also, if you are using an alignment option, you’ll instead want to make those disparity measurements against the
written L.tif and R.tif files (see Section 16) instead of the original input files.

7.3 Sub-pixel refinement

Once disparity map initialization is complete, every pixel in the disparity map will either have an estimated disparity
value, or it will be marked as invalid. All valid pixels are then adjusted in the sub-pixel refinement stage based on the
subpixel-mode setting.

The first mode is parabola-fitting sub-pixel refinement (subpixel-mode 1). This technique fits a 2D parabola to
points on the correlation cost surface in an 8-connected neighborhood around the cost value that was the “best” as
measured during disparity map initialization. The parabola’s minimum can then be computed analytically and taken
as as the new sub-pixel disparity value.

This method is easy to implement and extremely fast to compute, but it exhibits a problem known as pixel-locking: the
sub-pixel disparities tend toward their integer estimates and can create noticeable “stair steps” on surfaces that should
be smooth [SHM06][SS03]. See for example Fig. 7.5. Furthermore, the parabola subpixel mode is not capable of
refining a disparity estimate by more than one pixel, so although it produces smooth disparity maps, these results are
not much more accurate than the results that come out of the disparity map initialization in the first place. However, the
speed of this method makes it very useful as a “draft” mode for quickly generating a DEM for visualization (i.e. non-
scientific) purposes. It is also beneficial in the event that a user will simply downsample their DEM after generation
in Stereo Pipeline.

For high quality results, we recommend subpixel-mode 2: the Bayes EM weighted affine adaptive window cor-
relator. This advanced method produces extremely high quality stereo matches that exhibit a high degree of immunity
to image noise. For example Apollo Metric Camera images are affected by two types of noise inherent to the scanning
process: (1) the presence of film grain and (2) dust and lint particles present on the film or scanner. The former gives
rise to noise in the DEM values that wash out real features, and the latter causes incorrect matches or hard to detect
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Fig. 7.5: Left: Input images. Center: results using the parabola draft subpixel mode (subpixel-mode = 1). Right:
results using the Bayes EM high quality subpixel mode (subpixel-mode = 2).
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blemishes in the DEM. Attenuating the effect of these scanning artifacts while simultaneously refining the integer dis-
parity map to sub-pixel accuracy has become a critical goal of our system, and is necessary for processing real-world
data sets such as the Apollo Metric Camera data.

The Bayes EM subpixel correlator also features a deformable template window from the left image that can be rotated,
scaled, and translated as it zeros in on the correct match in the right image. This adaptive window is essential for
computing accurate matches on crater or canyon walls, and on other areas with significant perspective distortion due
to foreshortening.

This affine-adaptive behavior is based on the Lucas-Kanade template tracking algorithm, a classic algorithm in the
field of computer vision [BM04]. We have extended this technique; developing a Bayesian model that treats the
Lucas-Kanade parameters as random variables in an Expectation Maximization (EM) framework. This statistical
model also includes a Gaussian mixture component to model image noise that is the basis for the robustness of our
algorithm. We will not go into depth on our approach here, but we encourage interested readers to read our papers on
the topic [NHB+09][BNM+09].

However we do note that, like the computations in the disparity map initialization stage, we adopt a multi-scale ap-
proach for sub-pixel refinement. At each level of the pyramid, the algorithm is initialized with the disparity determined
in the previous lower resolution level of the pyramid, thereby allowing the subpixel algorithm to shift the results of
the disparity initialization stage by many pixels if a better match can be found using the affine, noise-adapted window.
Hence, this sub-pixel algorithm is able to significantly improve upon the results to yield a high quality, high resolution
result.

Another option when run time is important is subpixel-mode 3: the simple affine correlator. This is essentially
the Bayes EM mode with the noise correction features removed in order to decrease the required run time. In data sets
with little noise this mode can yield results similar to Bayes EM mode in approximately one fifth the time.

A different option is Phase Correlation, subpixel-mode 4, which implements the algorithm from [GSTF08]. It is
slow and does not work well on slopes but since the algorithm is very different it might perform in situations where
the other algorithms are not working well.

7.4 Triangulation

When running an ISIS session, the Stereo Pipeline uses geometric camera models available in ISIS [And08]. These
highly accurate models are customized for each instrument that ISIS supports. Each ISIS “cube” file contains all of the
information that is required by the Stereo Pipeline to find and use the appropriate camera model for that observation.

Other sessions such as DG (DigitalGlobe) or Pinhole, require that their camera model be provided as additional
arguments to the stereo command. Those camera models come in the form of an XML document for DG and
as *.pinhole, *.tsai, *.cahv, *.cahvor for Pinhole sessions. Those files must be the third and forth
arguments or immediately follow after the 2 input images for stereo.

ISIS camera models account for all aspects of camera geometry, including both intrinsic (i.e. focal length, pixel size,
and lens distortion) and extrinsic (e.g. camera position and orientation) camera parameters. Taken together, these
parameters are sufficient to “forward project” a 3D point in the world onto the image plane of the sensor. It is also
possible to “back project” from the camera’s center of projection through a pixel corresponding to the original 3D
point.

Notice, however, that forward and back projection are not symmetric operations. One camera is sufficient to “image”
a 3D point onto a pixel located on the image plane, but the reverse is not true. Given only a single camera and a pixel
location x = (u, v), that is the image of an unknown 3D point P = (x, y, z), it is only possible to determine that P
lies somewhere along a ray that emanates from the camera’s center of projection through the pixel location x on the
image plane (see Fig. 7.6).

Alas, once images are captured, the route from image pixel back to 3D points in the real world is through back
projection, so we must bring more information to bear on the problem of uniquely reconstructing our 3D point. In
order to determine P using back projection, we need two cameras that both contain pixel locations x1 and x2 where
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Fig. 7.6: Most remote sensing cameras fall into two generic categories based on their basic geometry. Framing
cameras (left) capture an instantaneous two-dimensional image. Linescan cameras (right) capture images one scan
line at a time, building up an image over the course of several seconds as the satellite moves through the sky.

Fig. 7.7: Once a disparity map has been generated and refined, it can be used in combination with the geometric
camera models to compute the locations of 3D points on the surface of Mars. This figure shows the position (at the
origins of the red, green, and blue vectors) and orientation of the Mars Global Surveyor at two points in time where it
captured images in a stereo pair.
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P was imaged. Now, we have two rays that converge on a point in 3D space (see Fig. 7.7). The location where they
meet must be the original location of P .

In practice, the two rays rarely intersect perfectly because any slight error in the camera position or pointing infor-
mation will effect the rays’ positions as well. Instead, we take the closest point of intersection of the two rays as the
location of point P .

Additionally, the actual distance between the rays at this point is an interesting and important error metric that measures
how self-consistent our two camera models are for this point. You will learn in the next chapter that this information,
when computed and averaged over all reconstructed 3D points, can be a valuable statistic for determining whether
to carry out bundle adjustment. Distance between the two rays at their closest intersection is recorded in the fourth
channel of the point cloud file, output-prefix-PC.tif. This information can be brought to the same perspective
as the output DEM by using the –error argument on the point2dem command.

This error in the triangulation, the distance between two rays, is not the true accuracy of the DEM. It is only another
indirect measure of quality. A DEM with high triangulation error is always bad and should have its images bundle-
adjusted. A DEM with low triangulation error is at least self consistent but could still be bad. A map of the triangulation
error should only be interpreted as a relative measurement. Where small areas are found with high triangulation error
came from correlation mistakes and large areas of error came from camera model inadequacies.
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CHAPTER

EIGHT

BUNDLE ADJUSTMENT

8.1 Overview

Satellite position and orientation errors have a direct effect on the accuracy of digital elevation models produced by the
Stereo Pipeline. If they are not corrected, these uncertainties will result in systematic errors in the overall position and
slope of the DEM. Severe distortions can occur as well, resulting in twisted or “taco shaped” DEMs, though in most
cases these effects are quite subtle and hard to detect. In the worst case, such as with old mission data like Voyager or
Apollo, these gross camera misalignments can inhibit Stereo Pipeline’s internal interest point matcher and block auto
search range detection.

Fig. 8.1: Bundle adjustment is illustrated here using a color-mapped, hill-shaded DEM mosaic from Apollo 15, Orbit
33, images. (a) Prior to bundle adjustment, large discontinuities can exist between overlapping DEMs made from
different images. (b) After bundle adjustment, DEM alignment errors are minimized and no longer visible.

Errors in camera position and orientation can be corrected using a process called bundle adjustment. Bundle adjustment
is the process of simultaneously adjusting the properties of many cameras and the 3D locations of the objects they see
in order to minimize the error between the estimated, back-projected pixel locations of the 3D objects and their actual
measured locations in the captured images.

This complex process can be boiled down to this simple idea: bundle adjustment ensures that the observations in mul-
tiple images of a single ground feature are self-consistent. If they are not consistent, then the position and orientation
of the cameras as well as the 3D position of the feature must be adjusted until they are. This optimization is carried
out along with thousands (or more) of similar constraints involving many different features observed in other images.
Bundle adjustment is very powerful and versatile: it can operate on just two overlapping images, or on thousands. It
is also a dangerous tool. Careful consideration is required to insure and verify that the solution does represent reality.

Bundle adjustment can also take advantage of GCPs, which are 3D locations of features that are known a priori (often
by measuring them by hand in another existing DEM). GCPs can improve the internal consistency of your DEM or
align your DEM to an existing data product. Finally, even though bundle adjustment calculates the locations of the
3D objects it views, only the final properties of the cameras are recorded for use by the Ames Stereo Pipeline. Those
properties can be loaded into the stereo program which uses its own method for triangulating 3D feature locations.
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When using the Stereo Pipeline, bundle adjustment is an optional step between the capture of images and the creation of
DEMs. The bundle adjustment process described below should be completed prior to running the stereo command.

Although bundle adjustment is not a required step for generating DEMs, it is highly recommended for users who plan
to create DEMs for scientific analysis and publication. Incorporating bundle adjustment into the stereo work flow not
only results in DEMs that are more internally consistent, it is also the correct way to co-register your DEMs with other
existing data sets and geodetic control networks.

At the moment however, Bundle Adjustment does not automatically work against outside DEMs from sources such as
laser altimeters. Hand-picked GCPs are the only way for ASP to register to those types of sources.

8.2 Bundle adjustment using ASP

Stereo Pipeline provides its own bundle adjustment tool, named bundle_adjust. Its usage is described in Section 13.5.

Here is an example of using this tool on a couple of Apollo 15 images, and its effect on decreasing the stereo triangu-
lation error.

Fig. 8.2: Illustration of the triangulation error map for a pair of images before (left) and after (right) using Stereo
Pipeline’s bundle_adjust. Red and black colors suggest higher error.

Running stereo without using bundle-adjusted camera models.

stereo AS15-M-1134.cub AS15-M-1135.cub run_noadjust/run

Performing bundle adjustment.

bundle_adjust AS15-M-1134.cub AS15-M-1135.cub -o run_ba/run

Running stereo while using the bundle-adjusted camera models.

stereo AS15-M-1134.cub AS15-M-1135.cub run_adjust/run \
--bundle-adjust-prefix run_ba/run

A comparison of the two ways of doing stereo is shown in Fig. 8.2.

ASP also offers the tool parallel_bundle_adjust which can be much faster bundle adjusting many images at
once.
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8.2.1 Floating intrinsics and using a lidar or DEM ground truth

This section documents some advanced functionality, and it suggested the reader study it carefully and invest a certain
amount of time to fully take advantage of these concepts.

When the input cameras are of pinhole type, it is possible to optimize the intrinsic parameters, in addition to the
extrinsics. It is also possible to take advantage of an existing terrain ground truth, such as a lidar file or a DEM, to
correct imperfectly calibrated intrinsic parameters, which can result in greatly improved results, such as creating less
distorted DEMs that agree much better with the ground truth.

A first attempt at floating the intrinsics

We recommend that first bundle adjustment is run with the intrinsics fixed, to get the extrinsics mostly correct, as
optimizing for both of them at the same time may result in a non-convex problem which may lead to a suboptimal
local minimum. Then, we will jointly optimize the intrinsics and extrinsics.

Note that when solving for intrinsics, bundle_adjust will by default optimize all intrinsic parameters and
will share them across all cameras (which must be the same type). You can control this behavior with the
--intrinsics-to-float and --intrinsics-to-share parameters.

Hence, the first invocation of camera optimization should be like:

bundle_adjust -t nadirpinhole --inline-adjustments \
left.tif right.tif left.tsai right.tsai -o run_ba/run

It is suggested that one run stereo with the obtained cameras, and then examine the intersection error:

stereo -t nadirpinhole --alignment-method epipolar left.tif right.tif \
run_ba/run-left.tsai run_ba/run-right.tsai run_stereo/run

point2dem --tr RESOLUTION --errorimage run_stereo/run-PC.tif
gdalinfo -stats run_stereo/run-IntersectionErr.tif
colormap run_stereo/run-IntersectionErr.tif
stereo_gui run_stereo/run-IntersectionErr_CMAP.tif

If desired, fancier stereo correlation algorithms can be used, such as MGM, as detailed in Section 7. For colormap,
--min and --max bounds can be specified if the automatic range is too large. We also suggest inspecting the interest
points:

stereo_gui left.tif right.tif run_ba/run

and then viewing the interest points from the menu.

If the interest points are not well-distributed, this may result in large ray intersection errors where they are missing.
If so, they can be re-created by modifying --ip-detect-method and --ip-per-tile. Or, one can take
advantage of the just-completed stereo run and invoke stereo_tri with the additional option:

--num-matches-from-disp-triplets 10000

to create dense and uniformly distributed interest points with desired density (the latter creates a .match file that needs
to be copied to the name bundle_adjust expects). This option also ensures that if three images are present,
and stereo is invoked on the first and second image, and then on the second and the third, followed by interest point
generation, many interest points will be triplets, that is, the same feature will often will be identified in all three images,
which can be a very good constraint on bundle adjustment later.

If the interest points are good and the mean intersection error is acceptable, but this error shows an odd nonlinear
pattern, that means it may be necessary to optimize the intrinsics. We do so by using the cameras with the optimized
extrinsics found earlier, that is:
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bundle_adjust -t nadirpinhole --inline-adjustments \
--solve-intrinsics --camera-weight 1 \
left.tif right.tif run_ba/run-left.tsai run_ba/run-right.tsai \
-o run_ba_intr/run

It is important to note that only the non-zero intrinsics will be optimized, and the step size used in optimizing a certain
intrinsic parameter is proportional to it. Hence, if an intrinsic is 0 and it is desired to optimize it, it should be set to
small non-zero value suggestive of its final estimated scale. If the algorithm fails to give a good solution, perhaps
different initial values for the intrinsics should be tried. For example, one can try changing the sign of the initial
distortion coefficients, or make their values much smaller.

Sometimes the camera weight may need to be decreased, even all the way to 0, if it appears that the solver is not
aggressive enough, or it may need to be increased if perhaps it overfits. This will become less of a concern if there is
some ground truth, as discussed later.

Next, one can run stereo as before, with the new cameras, and see if the obtained solution is more acceptable, that is,
if the intersection error is smaller. It is good to note that a preliminary investigation can already be made right after
bundle adjustment, by looking at the residual error files before and after bundle adjustment. They are in the output
directory, with names containing the strings:

initial_residuals_no_loss_function_pointmap
final_residuals_no_loss_function_pointmap

If desired, these csv files can be converted to a DEM with point2dem, which can be invoked with:

--csv-format 1:lon,2:lat,4:height_above_datum

then one can look at their statistics, also have them colorized, and viewed in stereo_gui.

This file also shows how often each feature is seen in the images, so, if three images are present, hopefully many
features will be seen three times.

Using ground truth when floating the intrinsics

If a ground truth lidar file (or DEM) is present, say named lidar.csv, it can be used as part of bundle adjustment.
For that, the DEM obtained with the earlier stereo pass needs to be first aligned to this ground truth, such as:

pc_align --max-displacement VAL run_stereo/run-DEM.tif lidar.csv -o run_align/run

(see the manual page of this tool in Section 13.39 for more details).

This alignment can then be applied to the cameras as well:

bundle_adjust -t nadirpinhole --inline-adjustments --max-iterations 0 \
--initial-transform run_align/run-inverse-transform.txt \
left.tif right.tif run_ba/run-left.tsai run_ba/run-right.tsai \
-o run_align/run

Here we have used 0 iterations because we simply want to move the cameras without any optimization. Note that your
lidar file may have some conventions as to what each column means, and then any tools that use this cloud must set
--csv-format and perhaps also --datum and/or --csv-proj4.

If pc_align is called with the clouds in reverse order (the denser cloud should always be the first), when
applying the transform to the cameras in bundle_adjust one should use transform.txt instead of
inverse-transform.txt above.
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Next, we will need to create a disparity from the left and right images that we will use during bundle adjustment. For
that we will take the disparity obtained in stereo and remove any intermediate transforms stereo applied to the images
and the disparity. This can be done as follows:

stereo_tri -t nadirpinhole --alignment-method epipolar left.tif right.tif \
run_ba/run-left.tsai run_ba/run-right.tsai run_stereo/run \
--unalign-disparity

and then bundle adjustment can be invoked with this disparity and the lidar/DEM file. Note that we use the cameras
obtained after alignment:

bundle_adjust -t nadirpinhole --inline-adjustments --solve-intrinsics \
left.tif right.tif run_align/run-run-left.tsai run_align/run-run-right.tsai \
--reference-terrain lidar.csv --disparity-list run_stereo/run-unaligned-D.tif \
--camera-weight 0 --max-disp-error 50 --max-num-reference-points 1000000 \
--parameter-tolerance 1e-12 --reference-terrain-weight 5 -o run_ba_intr_lidar/run

Here we set the camera weight all the way to 0, since it is hoped that having a reference terrain is a sufficient constraint
to prevent over-fitting.

This tool will write some residual files of the form:

initial_residuals_no_loss_function_reference_terrain.txt
final_residuals_no_loss_function_reference_terrain.txt

which may be studied to see if the error-to-lidar decreased. Each residual is defined as the distance, in pixels, between
a terrain point projected into the left camera image and then transferred onto the right image via the unaligned disparity
and its direct projection into the right camera.

If the initial errors in that file are large to start with, say more than 2-3 pixels, there is a chance something is wrong.
Either the cameras are not well-aligned to each other or to the ground, or the intrinsics are off too much. In that case
it is possible the errors are too large for this approach to reduce them effectively.

We strongly recommend that for this process one should not rely on bundle adjustment to create interest points, but to
use the dense and uniformly distributed ones created with stereo, as suggested earlier.

The hope is that after these directions are followed, this will result in a smaller intersection error and a smaller error
to the lidar/DEM ground truth (the later can be evaluated by invoking geodiff --absolute on the ASP-created
aligned DEM and the reference lidar/DEM file).

When the lidar file is large, in bundle adjustment one can use the flag --lon-lat-limit to read only a relevant
portion of it. This can speed up setting up the problem but does not affect the optimization.

Using the heights from a reference DEM

In some situations the DEM obtained with ASP is, after alignment, quite similar to the reference DEM, but the
heights may be off. This can happen, for example, if the focal length is not accurately known. It is then possible after
triangulating the interest point matches in bundle adjustment to replace their heights above datum with values obtained
from the reference DEM, which are presumably more accurate. These triangulated points can be kept fixed while the
extrinsics and intrinsics of the cameras are varied. The option for this is --heights-from-dem arg. To allow
these triangulated points to vary somewhat, one can pass a positive value to --heights-from-dem-weight. The
larger its value is, the more constrained those points will be.

This option can be used instead of the --reference-terrain option or together with it, and the DEM provided
need not be the same for the two options.

It is important to note that here we assume that a simple height correction is enough. Hence this option is an ap-
proximation, and perhaps it should be used iteratively, and a subsequent pass of bundle adjustment should be done
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without it, or one should consider using a smaller weight above. This option can however be more effective than using
--reference-terrain when there is a large uncertainty in camera intrinsics.

Using multiple images

Everything mentioned earlier works with more than two images, in fact, having more images is highly desirable, and
ideally the images overlap a lot. For example, one can create stereo pairs consisting of first and second images, second
and third, third and fourth, etc., invoke the above logic for each pair, that is, run stereo, alignment to the ground truth,
dense interest point generation, creation of unaligned disparities, and transforming the cameras using the alignment
transform matrix. Then, a directory can be made in which one can copy the dense interest point files, and run bundle
adjustment with intrinsics optimization jointly for all cameras. Hence, one should use a command as follows (the
example here is for 4 images):

disp1=run_stereo12/run-unaligned-D.tif
disp2=run_stereo23/run-unaligned-D.tif
disp3=run_stereo34/run-unaligned-D.tif
bundle_adjust -t nadirpinhole --inline-adjustments \

--solve-intrinsics --camera-weight 0 \
img1.tif img2.tif img3.tif img4.tif \
run_align_12/run-img1.tsai run_align12/run-img2.tsai \
run_align_34/run-img3.tsai run_align34/run-img4.tsai \
--reference-terrain lidar.csv \
--disparity-list "$disp1 $disp2 $disp3" \
--max-disp-error 50 --max-num-reference-points 1000000 \
--overlap-limit 1 --parameter-tolerance 1e-12 \
--reference-terrain-weight 5 \
-o run_ba_intr_lidar/run

In case it is desired to omit the disparity between one pair of images, for example, if they don’t overlap, instead of the
needed unaligned disparity one can put the word none in this list.

Notice that since this joint adjustment was initialized from several stereo pairs, the second camera picked above, for
example, could have been either the second camera from the first pair, or the first camera from the second pair, so there
was a choice to make. In Section 10.18 an example is shown where a preliminary bundle adjustment happens at the
beginning, without using a reference terrain, then those cameras are jointly aligned to the reference terrain, and then
one continues as done above, but this time one need not have dealt with individual stereo pairs.

The option --overlap-limit can be used to control which images should be tested for interest point matches,
and a good value for it is say 1 if one plans to use the interest points generated by stereo, though a value
of 2 may not hurt either. One may want to decrease --parameter-tolerance, for example, to 1e-12,
and set a value for --max-disp-error, e.g, 50, to exclude unreasonable disparities (this last number may
be something one should experiment with, and the results can be somewhat sensitive to it). A larger value of
--reference-terrain-weight can improve the alignment of the cameras to the reference terrain.

Also note the earlier comment about sharing and floating the intrinsics individually.
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RPC lens distortion

If it is realized that the optimized intrinsics still do not make the ASP-generated DEMs agree very well with the
ground truth, and some residual and systematic error can be seen either by comparing these two or in intersection error
files, it may be convenient to convert the current camera models to ones with the distortion given by rational function
coefficients (RPC) of a desired degree (Section 17.1). An RPC model can have a lot more coefficients to optimize,
hence a better fit can be found. However, it is suggested to use low-degree polynomials as those are easy to fit, and go
to higher degree only for refinement if needed.

An example showing how to convert a camera model to RPC is given in Section 13.13.

Working with map-projected images

If stereo was done with map-projected images, one can still extract dense interest point matches and the unaligned
disparity from such a run, and these can be applied with the original unprojected images for the purpose of bundle
adjustment (after being renamed appropriately). This may be convenient since while bundle adjustment must always
happen with the original images, stereo could be faster and more accurate when images are map-projected. It is
suggested that the unaligned disparity and interest points obtained this way be examined carefully. Particularly the
grid size used in mapprojection should be similar to the ground sample distance for the raw images for best results.

8.3 Bundle adjustment using ISIS

In what follows we describe how to do bundle adjustment using ISIS’s tool-chain. It also serves to describe bundle
adjustment in more detail, which is applicable to other bundle adjustment tools as well, including Stereo Pipeline’s
own tool.

In bundle adjustment, the position and orientation of each camera station are determined jointly with the 3D position
of a set of image tie-points points chosen in the overlapping regions between images. Tie points, as suggested by the
name, tie multiple camera images together. Their physical manifestation would be a rock or small crater than can be
observed across more than one image.

Tie-points are automatically extracted using ISIS’s autoseed and pointreg (alternatively one could use a number
of outside methods such as the famous SURF [BETG08]). Creating a collection of tie points, called a control network,
is a three step process. First, a general geographic layout of the points must be decided upon. This is traditionally just
a grid layout that has some spacing that allows for about 20-30 measurements to be made per image. This shows up
in slightly different projected locations in each image due to their slight misalignments. The second step is to have an
automatic registration algorithm try to find the same feature in all images using the prior grid as a starting location.
The third step is to manually verify all measurements visually, checking to insure that each measurement is looking at
the same feature.

Bundle Adjustment in ISIS is performed with the jigsaw executable. It generally follows the method described
in [TMHF00] and determines the best camera parameters that minimize the projection error given by ε =

∑
k

∑
j(Ik−

I(Cj , Xk))
2 where Ik are the tie points on the image plane, Cj are the camera parameters, andXk are the 3D positions

associated with features Ik. I(Cj , Xk) is an image formation model (i.e. forward projection) for a given camera and
3D point. To recap, it projects the 3D point, Xk, into the camera with parameters Cj . This produces a predicted
image location for the 3D point that is compared against the observed location, Ik. It then reduces this error with the
Levenberg-Marquardt algorithm (LMA). Speed is improved by using sparse methods as described in [HZ04], [Kon10],
and [CDHR08].

Even though the arithmetic for bundle adjustment sounds clever, there are faults with the base implementation. Imagine
a case where all cameras and 3D points were collapsed into a single point. If you evaluate the above cost function,
you’ll find that the error is indeed zero. This is not the correct solution if the images were taken from orbit. Another
example is if a translation was applied equally to all 3D points and camera locations. This again would not affect the
cost function. This fault comes from bundle adjustment’s inability to control the scale and translation of the solution.
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Fig. 8.3: A feature observation in bundle adjustment, from [MWLS09]

It will correct the geometric shape of the problem, yet it cannot guarantee that the solution will have correct scale and
translation.

ISIS attempts to fix this problem by adding two additional cost functions to bundle adjustment. First of which is
ε =

∑
j(C

initial
j − Cj)

2. This constrains camera parameters to stay relatively close to their initial values. Second, a
small handful of 3D ground control points can be chosen by hand and added to the error metric as ε =

∑
k(X

gcp
k −Xk)

2

to constrain these points to known locations in the planetary coordinate frame. A physical example of a ground control
point could be the location of a lander that has a well known location. GCPs could also be hand-picked points against
a highly regarded and prior existing map such as the THEMIS Global Mosaic or the LRO-WAC Global Mosaic.

Like other iterative optimization methods, there are several conditions that will cause bundle adjustment to terminate.
When updates to parameters become insignificantly small or when the error, ε, becomes insignificantly small, then
the algorithm has converged and the result is most likely as good as it will get. However, the algorithm will also
terminate when the number of iterations becomes too large in which case bundle adjustment may or may not have
finished refining the parameters of the cameras.

8.3.1 Tutorial: Processing Mars Orbital Camera Images

This tutorial for ISIS’s bundle adjustment tools is taken from [Mor12a] and [Mor12b]. These tools are not a product of
NASA nor the authors of Stereo Pipeline. They were created by USGS and their documentation is available at [Cen].

What follows is an example of bundle adjustment using two MOC images of Hrad Vallis. We use images E02/01461
and M01/00115, the same as used in Section 3. These images are available from NASA’s PDS (the ISIS mocproc
program will operate on either the IMQ or IMG format files, we use the .imq below in the example). For reference,
the following ISIS commands are how to convert the MOC images to ISIS cubes.

ISIS> mocproc from=e0201461.imq to=e0201461.cub mapping=no
ISIS> mocproc from=m0100115.imq to=m0100115.cub mapping=no

Note that the resulting images are not map-projected. Bundle adjustment requires the ability to project arbitrary 3D
points into the camera frame. The process of map-projecting an image dissociates the camera model from the image.
Map-projecting can be perceived as the generation of a new infinitely large camera sensor that may be parallel to the
surface, a conic shape, or something more complex. That makes it extremely hard to project a random point into
the camera’s original model. The math would follow the transformation from projection into the camera frame, then
projected back down to surface that ISIS uses, then finally up into the infinitely large sensor. Jigsaw does not support
this and thus does not operate on map-projected images.
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Before we can dive into creating our tie-point measurements we must finish prepping these images. The following
commands will add a vector layer to the cube file that describes its outline on the globe. It will also create a data file
that describes the overlapping sections between files.

ISIS> footprintinit from=e0201461.cub
ISIS> footprintinit from=m0100115.cub
ISIS> echo *cub | xargs -n1 echo > cube.lis
ISIS> findimageoverlaps from=cube.lis overlaplist=overlap.lis

At this point, we are ready to start generating our measurements. This is a three step process that requires defining a
geographic pattern for the layout of the points on the groups, an automatic registration pass, and finally a manual clean
up of all measurements. Creating the ground pattern of measurements is performed with autoseed. It requires a
settings file that defines the spacing in meters between measurements. For this example, write the following text into
a autoseed.def file.

Group = PolygonSeederAlgorithm
Name = Grid
MinimumThickness = 0.01
MinimumArea = 1
XSpacing = 1000
YSpacing = 2000

End_Group

The minimum thickness defines the minimum ratio between the sides of the region that can have points applied to
it. A choice of 1 would define a square and anything less defines thinner and thinner rectangles. The minimum area
argument defines the minimum square meters that must be in an overlap region. The last two are the spacing in meters
between control points. Those values were specifically chosen for this pair so that about 30 measurements would
be produced from autoseed. Having more control points just makes for more work later on in this process. Run
autoseed with the following instruction.

ISIS> autoseed fromlist=cube.lis overlaplist=overlap.lis \
onet=control.net deffile=autoseed.def networkid=moc \
pointid=???? description=hrad_vallis

The next step is to perform auto registration of these features between the two images using pointreg. This pro-
gram also requires a settings file that describes how to do the automatic search. Copy the text box below into a
autoRegTemplate.def file.

Object = AutoRegistration
Group = Algorithm
Name = MaximumCorrelation
Tolerance = 0.7

EndGroup

Group = PatternChip
Samples = 21
Lines = 21
MinimumZScore = 1.5
ValidPercent = 80

EndGroup

Group = SearchChip
Samples = 75
Lines = 1000

EndGroup
EndObject

The search chip defines the search range for which pointreg will look for matching images. The pattern chip is
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Fig. 8.4: A visualization of the features laid out by autoseed in qnet. Note that the marks do not cover the same
features between images. This is due to the poor initial SPICE data for MOC images.
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simply the kernel size of the matching template. The search range is specific for this image pair. The control network
result after autoseed had a large vertical offset in the ball park of 500 px. The large misalignment dictated the need
for the large search in the lines direction. Use qnet to get an idea for what the pixel shifts look like in your stereo
pair to help you decide on a search range. In this example, only one measurement failed to match automatically. Here
are the arguments to use in this example of pointreg.

ISIS> pointreg fromlist=cube.lis cnet=control.net \
onet=control_pointreg.net deffile=autoRegTemplate.def

The third step is to manually edit the control and verify the measurements in qnet. Type qnet in the terminal and
then open cube.lis and lastly control_pointreg.net. From the Control Network Navigator window, click on the first
point listed as 0001. That opens a third window called the Qnet Tool. That window will allow you to play a flip
animation that shows alignment of the feature between the two images. Correcting a measurement is performed by
left clicking in the right image, then clicking Save Measure, and finally finishing by clicking Save Point.

In this tutorial, measurement 0025 ended up being incorrect. Your number may vary if you used different settings than
the above or if MOC spice data has improved since this writing. When finished, go back to the main Qnet window.
Save the final control network as control_qnet.net by clicking on File, and then Save As.

Fig. 8.5: A visualization of the features after manual editing in qnet. Note that the marks now appear in the same
location between images.

Once the control network is finished, it is finally time to start bundle adjustment. Here’s what the call to jigsaw
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looks like:

ISIS> jigsaw fromlist=cube.lis update=yes twist=no radius=yes \
cnet=control_qnet.net onet=control_ba.net

The update option defines that we would like to update the camera pointing, if our bundle adjustment converges. The
twist=no says to not solve for the camera rotation about the camera bore. That property is usually very well known as
it is critical for integrating an image with a line-scan camera. The radius=yes means that the radius of the 3D features
can be solved for. Using no will force the points to use height values from another source, usually LOLA or MOLA.

The above command will spew out a bunch of diagnostic information from every iteration of the optimization algo-
rithm. The most important feature to look at is the sigma0 value. It represents the mean of pixel errors in the control
network. In our run, the initial error was 1065 px and the final solution had an error of 1.1 px.

Producing a DEM using the newly created camera corrections is the same as covered in the Tutorial. When using
jigsaw, it modifies a copy of the spice data that is stored internally to the cube file. Thus when we want to create
a DEM using the correct camera geometry, no extra information needs to be given to stereo since it is already
contained in the file. In the event a mistake has been made, spiceinit will overwrite the spice data inside a cube
file and provide the original uncorrected camera pointing.

ISIS> stereo E0201461.cub M0100115.cub bundled/bundled
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CHAPTER

NINE

SOLVING FOR CAMERA POSES BASED ON IMAGES

The ASP tool camera_solve offers several ways to find the true position of frame camera images that do not come
with any attached pose metadata. This can be useful with aerial, hand-held, and historical images for which such
information may be incomplete or inaccurate.

An overview of the tool and examples are provided in this chapter. Reference information for this tool can be found
in Section 13.11.

This tool can be optionally bypassed if, for example, the longitude and latitude of the corners of all images are known
(Section 9.4).

9.1 Camera Solve Overview

The camera_solve tool is implemented as a Python wrapper around two other tools. The first of these is the the
THEIA software library, which is used to generate initial camera position estimates in a local coordinate space. You can
learn more about THEIA at http://www.theia-sfm.org/index.html. The second tool is ASP’s own bundle_adjust
tool. The second step improves the solution to account for lens distortion and transforms the solution from local to
global coordinates by making use of additional input data.

The tool only solves for the extrinsic camera parameters and the user must provide intrinsic camera information. You
can use the camera_calibrate tool (see Section 13.9) or other camera calibration software to solve for intrinsic
parameters if you have access to the camera in question. The camera calibration information must be contained in a
.tsai pinhole camera model file and must passed in using the --calib-file option. You can find descriptions of
our supported pinhole camera models in Section 17.1.

If no intrinsic camera information is known, it can be guessed by doing some experimentation. This is discussed in
Section 9.5.

In order to transform the camera models from local to world coordinates, one of three pieces of information may be
used. These sources are listed below and described in more detail in the examples that follow:

• A set of ground control points of the same type used by pc_align. The easiest way to generate these points is
to use the ground control point writer tool available in the stereo-gui tool.

• A set of estimated camera positions (perhaps from a GPS unit) stored in a csv file.

• A DEM which a local point cloud can be registered to using pc_align. This method can be more accurate if
estimated camera positions are also used. The user must perform alignment to a DEM, that step is not handled
by camera_solve.

Power users can tweak the individual steps that camera_solve goes through to optimize their results. This primarily
involves setting up a custom flag file for THEIA and/or passing in settings to bundle_adjust.
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9.2 Example: Apollo 15 Metric Camera

To demonstrate the ability of the Ames Stereo Pipeline to process a generic frame camera we use images from the
Apollo 15 Metric camera. The calibration information for this camera is available online and we have accurate digital
terrain models we can use to verify our results.

First download a pair of images:

> wget http://apollo.sese.asu.edu/data/metric/AS15/png/AS15-M-0414_MED.png
> wget http://apollo.sese.asu.edu/data/metric/AS15/png/AS15-M-1134_MED.png

Fig. 9.1: The two Apollo 15 images (AS15-M-0414 and AS15-M-1134).

In order to make the example run faster we use downsampled versions of the original images. The images at those
links have already been downsampled by a factor of 4

√
2 from the original images. This means that the effective pixel

size has increased from five microns (0.005 millimeters) to 0.028284 millimeters.

The next step is to fill out the rest of the pinhole camera model information we need. Using the data sheets available
at http://apollo.sese.asu.edu/SUPPORT_DATA/AS15_SIMBAY_SUMMARY.pdf we can find the lens distortion pa-
rameters for metric camera. Looking at the ASP lens distortion models in Section 17.1, we see that the description
matches ASP’s Brown-Conrady model. Using the example in the appendix we can fill out the rest of the sensor model
file (metric_model.tsai) so it looks as follows:

VERSION_3
fu = 76.080
fv = 76.080
cu = 57.246816
cv = 57.246816
u_direction = 1 0 0
v_direction = 0 1 0
w_direction = 0 0 1
C = 0 0 0
R = 1 0 0 0 1 0 0 0 1
pitch = 0.028284
BrownConrady
xp = -0.006
yp = -0.002
k1 = -0.13361854e-5
k2 = 0.52261757e-09
k3 = -0.50728336e-13
p1 = -0.54958195e-06
p2 = -0.46089420e-10
phi = 2.9659070

These parameters use units of millimeters so we have to convert the nominal center point of the images from 2024
pixels to units of millimeters. Note that for some older images like these the nominal image center can be checked
by looking for some sort of marking around the image borders that indicates where the center should lie. For these
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pictures there are black triangles at the center positions and they line up nicely with the center of the image. Before
we try to solve for the camera positions we can run a simple tool to check the quality of our camera model file:

> undistort_image AS15-M-0414_MED.png metric_model.tsai -o corrected_414.tif

It is difficult to tell if the distortion model is correct by using this tool but it should be obvious if there are any gross
errors in your camera model file such as incorrect units or missing parameters. In this case the tool will fail to run or
will produce a significantly distorted image. For certain distortion models the undistort_image tool may take a
long time to run.

If your input images are not all from the same camera or were scanned such that the center point is not at the same
pixel, you can run camera_solve with one camera model file per input image. To do so pass a space-separated
list of files surrounded by quotes to the -calib-file option such as -calib-file "c1.tsai c2.tsai
c3.tsai".

If we do not see any obvious problems we can go ahead and run the camera_solve tool:

> camera_solve out/ AS15-M-0414_MED.png AS15-M-1134_MED.png --datum D_MOON \
--calib-file metric_model.tsai

We should get some camera models in the output folder and see a printout of the final bundle adjustment error among
the program output information:

Cost:
Initial 1.450385e+01
Final 7.461198e+00
Change 7.042649e+00

We can’t generate a DEM with these local camera models but we can run stereo anyways and look at the intersection
error in the fourth band of the PC.tif file. While there are many speckles in this example where stereo correlation
failed the mean intersection error is low and we don’t see any evidence of lens distortion error.

> stereo AS15-M-0414_MED.png AS15-M-1134_MED.png out/AS15-M-0414_MED.png.final.tsai \
out/AS15-M-1134_MED.png.final.tsai -t pinhole s_local/out --corr-timeout 300 \
--erode-max-size 100

> gdalinfo -stats s_local/out-PC.tif
...
Band 4 Block=256x256 Type=Float32, ColorInterp=Undefined

Minimum=0.000, Maximum=56.845, Mean=0.340, StdDev=3.512
Metadata:
STATISTICS_MAXIMUM=56.844654083252
STATISTICS_MEAN=0.33962282293374
STATISTICS_MINIMUM=0
STATISTICS_STDDEV=3.5124044818554

The tool point2mesh (Section 13.43) can be used to obtain a visualizable mesh from the point cloud.

In order to generate a useful DEM, we need to move our cameras from local coordinates to global coordinates. The
easiest way to do this is to obtain known ground control points (GCPs) which can be identified in the frame images.
This will allow an accurate positioning of the cameras provided that the GCPs and the camera model parameters are
accurate. To create GCPs see the instructions for the stereo_gui tool in Section 13.5.1. For the Moon there are
several ways to get DEMs and in this case we generated GCPs using stereo_gui and a DEM generated from
LRONAC images.

After running this command:

> camera_solve out_gcp/ AS15-M-0414_MED.png AS15-M-1134_MED.png --datum D_MOON \
--calib-file metric_model.tsai --gcp-file ground_control_points.gcp
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we end up with results that can be compared with the a DEM created from LRONAC images. The stereo results on the
Apollo 15 images leave something to be desired but the DEM they produced has been moved to the correct location.
You can easily visualize the output camera positions using the orbitviz tool with the -load-camera-solve
option as shown below. Green lines between camera positions mean that a sufficient number of matching interest
points were found between those two images.

For GCP to be usable, they can be one of two kinds. The preferred option is for each of at least three GCP to show
up in more than one image. Then their triangulated positions can be determined in local coordinates and in global
(world) coordinates, and bundle_adjust will be able to compute the transform between these coordinate systems,
and convert the cameras to world coordinates.

If this is not possible, then at least two of the images should have at least three GCP each, and they need not be shared
among the images. For example, for each image the longitude, latitude, and height of each of its four corners can be
known. Then, one can pass such a GCP file to camera_solve and also with the flag:

--bundle-adjust-params "--transform-cameras-using-gcp"

and it will attempt to transform the cameras to world coordinates.

Next, one can run stereo.

> stereo AS15-M-0414_MED.png AS15-M-1134_MED.png out_gcp/AS15-M-0414_MED.png.final.
↪→tsai \
out_gcp/AS15-M-1134_MED.png.final.tsai -t nadirpinhole s_global/out --corr-timeout

↪→300 \
--erode-max-size 100

> orbitviz -t nadirpinhole -r moon out_gcp --load-camera-solve

Fig. 9.2: Left: Solved-for camera positions plotted using orbitviz. Right: A narrow LRONAC DEM overlaid on the
resulting DEM, both colormapped to the same elevation range.

ASP also supports the method of initializing the camera_solve tool with estimated camera positions. This method
will not move the cameras to exactly the right location but it should get them fairly close and at the correct scale,
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hopefully close enough to be used as-is or to be refined using pc_align or some other method. To use this method,
pass additional bundle adjust parameters to camera_solve similar to the following line:

--bundle-adjust-params '--camera-positions nav.csv \
--csv-format "1:file 12:lat 13:lon 14:height_above_datum" --camera-weight 0.2'

The nav data file you use must have a column (the “file” column) containing a string that can be matched to the
input image files passed to camera_solve. The tool looks for strings that are fully contained inside one of
the image file names, so for example the field value 2009_10_20_0778 would be matched with the input file
2009_10_20_0778.JPG.

Section 5 will discuss the stereo program in more detail and the other tools in ASP.

9.3 Example: IceBridge DMS Camera

The DMS (Digital Mapping System) Camera is a frame camera flown on as part of the NASA IceBridge program
to collect images of polar and Antarctic terrain (http://nsidc.org/icebridge/portal/) that we can use to produce digital
terrain.

To process this data the steps are very similar to the steps described above for the Apollo Metric camera but there
are some aspects which are particular to IceBridge. You can download DMS images from ftp://n5eil01u.ecs.nsidc.org/
SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/. A list of the available data types can be found at https://nsidc.org/
data/icebridge/instr_data_summary.html. This example uses data from the November 5, 2009 flight over Antarctica.
The following camera model (icebridge_model.tsai) was used (see Section 17.1 on Pinhole camera models):

VERSION_3
fu = 28.429
fv = 28.429
cu = 17.9712
cv = 11.9808
u_direction = 1 0 0
v_direction = 0 1 0
w_direction = 0 0 1
C = 0 0 0
R = 1 0 0 0 1 0 0 0 1
pitch = 0.0064
Photometrix
xp = 0.004
yp = -0.191
k1 = 1.31024e-04
k2 = -2.05354e-07
k3 = -5.28558e-011
p1 = 7.2359e-006
p2 = 2.2656e-006
b1 = 0.0
b2 = 0.0

Note that these images are RGB format which is not supported by all ASP tools. To use the files with ASP, first convert
them to single channel images using a tool such as ImageMagick’s convert, gdal_translate, or gdal_edit.
py. Different conversion methods may produce slightly different results depending on the contents of your input
images. Some conversion command examples are shown below:

convert rgb.jpg -colorspace Gray gray.jpg
gdal_calc.py --overwrite --type=Float32 --NoDataValue=-32768 \

-A rgb.tif --A_band=1 -B rgb.tif --B_band=2 -C rgb.tif \
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--C_band=3 --outfile=gray.tif --calc="A*0.2989+B*0.5870+C*0.1140"
gdal_translate -b 1 rgb.jpg gray.jpg

In the third command we used gdal_translate to pick a single band rather than combining the three.

Obtaining ground control points for icy locations on Earth can be particularly difficult because they are not well
surveyed or because the terrain shifts over time. This may force you to use estimated camera positions to convert
the local camera models into global coordinates. To make this easier for IceBridge data sets, ASP provides the
icebridge_kmz_to_csv tool (see Section 13.24) which extracts a list of estimated camera positions from the
kmz files available for each IceBridge flight at http://asapdata.arc.nasa.gov/dms/missions.html.

Another option which is useful when processing IceBridge data is the --position-filter-dist option for
bundle_adjust. IceBridge data sets contain a large number of images and when processing many at once you can
significantly decrease your processing time by using this option to limit interest-point matching to image pairs which
are actually close enough to overlap. A good way to determine what distance to use is to load the camera position kmz
file from their website into Google Earth and use the ruler tool to measure the distance between a pair of frames that
are as far apart as you want to match. Commands using these options may look like this:

icebridge_kmz_to_csv 1000123_DMS_Frame_Events.kmz camera_positions.csv
camera_solve out 2009_11_05_00667.JPG 2009_11_05_00668.JPG \

2009_11_05_00669.JPG 2009_11_05_00670.JPG 2009_11_05_02947.JPG 2009_11_05_02948.
↪→JPG \
2009_11_05_02949.JPG 2009_11_05_02950.JPG 2009_11_05_01381.JPG 2009_11_05_01382.

↪→JPG \
--datum WGS84 --calib-file icebridge_model.tsai \
--bundle-adjust-params '--camera-positions camera_positions.csv \
--csv-format "1:file 2:lon 3:lat 4:height_above_datum" --position-filter-dist 2000'

orbitviz out --load-camera-solve --hide-labels -r wgs84 -t nadirpinhole

Alternatively, the camera_solve executable can be bypassed altogether. If a given image has already an orthoimage
associated with it (check the IceBridge portal page), that provides enough information to guess an initial position of
the camera, using the ortho2pinhole tool. Later, the obtained cameras can be bundle-adjusted. Here is how this
tool can be used, on grayscale images:

ortho2pinhole raw_image.tif ortho_image.tif icebridge_model.tsai output_pinhole.tsai

Some IceBridge flights contain data from the Land, Vegetation, and Ice Sensor (LVIS) lidar which can be used
to register DEMs created using DMS images. LVIS data can be downloaded at ftp://n5eil01u.ecs.nsidc.org/SAN2/
ICEBRIDGE/ILVIS2.001/. The lidar data comes in plain text files that pc_align and point2dem can parse using
the following option:

--csv-format "5:lat 4:lon 6:height_above_datum"

ASP provides the lvis2kml tool to help visualize the coverage and terrain contained in LVIS files, see Section 13.31
for details. The LVIS lidar coverage is sparse compared to the image coverage and you will have difficulty getting
a good registration unless the region has terrain features such as hills or you are registering very large point clouds
that overlap with the lidar coverage across a wide area. Otherwise pc_align will simply slide the flat terrain to
an incorrect location to produce a low-error fit with the narrow lidar tracks. This test case was specifically chosen to
provide strong terrain features to make alignment more accurate but pc_align still failed to produce a good fit until
the lidar point cloud was converted into a smoothed DEM.

stereo 2009_11_05_02948.JPG 2009_11_05_02949.JPG out/2009_11_05_02948.JPG.final.
↪→tsai \
out/2009_11_05_02949.JPG.final.tsai st_run/out -t nadirpinhole

point2dem ILVIS2_AQ2009_1105_R1408_055812.TXT --datum WGS_1984 \
--t_srs "+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m

↪→+no_defs" \

82 Chapter 9. Solving for Camera Poses Based on Images

http://asapdata.arc.nasa.gov/dms/missions.html
ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE/ILVIS2.001/
ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE/ILVIS2.001/


Ames Stereo Pipeline Documentation, Release 3.0.0

Fig. 9.3: Left: Measuring the distance between estimated frame locations using Google Earth and an IceBridge kmz
file. The kmz file is from the IceBridge website with no modifications. Using a position filter distance of 2000
meters will mostly limit image IP matching in this case to each image’s immediate “neighbors”. Right: Display of
camera_solve results for ten IceBridge images using orbitviz.

--csv-format "5:lat 4:lon 6:height_above_datum" --tr 30 \
--search-radius-factor 2.0 -o lvis

pc_align --max-displacement 1000 lvis-DEM.tif st_run/out-PC.tif -o align_run/out \
--save-transformed-source-points --datum wgs84 --outlier-ratio 0.55

point2dem align_run/out-trans_source.tif --datum WGS_1984 \
--t_srs "+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m

↪→+no_defs"
colormap align_run_big/out-trans_source-DEM.tif --min 200 --max 1500
colormap lvis-DEM.tif --min 200 --max 1500
image2qtree lvis-DEM_CMAP.tif
image2qtree align_run_big/out-trans_source-DEM_CMAP.tif

Other IceBridge flights contain data from the Airborne Topographic Mapper (ATM) lidar sensor. Data
from this sensor comes packed in one of several formats (variants of .qi or .h5) so ASP provides the
extract_icebridge_ATM_points tool to convert them into plain text files, which later can be read into other
ASP tools using the formatting:

--csv-format "1:lat 2:lon 3:height_above_datum"

To run the tool, just pass in the name of the input file as an argument and a new file with a csv extension will be created
in the same directory. Using the ATM sensor data is similar to using the LVIS sensor data.

For some IceBridge flights, lidar-aligned DEM files generated from the DMS image files are available, see the web
page here: http://nsidc.org/data/iodms3 These files are improperly formatted and cannot be used by ASP as is. To
correct them, run the correct_icebridge_l3_dem tool as follows:

correct_icebridge_l3_dem IODMS3_20120315_21152106_07371_DEM.tif fixed_dem.tif 1

The third argument should be 1 if the DEM is in the northern hemisphere and 0 otherwise. The corrected DEM files
can be used with ASP like any other DEM file.

Section 5 will discuss the stereo program in more detail and the other tools in ASP.
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Fig. 9.4: LVIS lidar DEM overlaid on the ASP created DEM, both colormapped to the same elevation range. The ASP
DEM could be improved but the registration is accurate. Notice how narrow the LVIS lidar coverage is compared to
the field of view of the camera. You may want to experiment using the SGM algorithm to improve the coverage.
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9.4 Solving for Pinhole cameras using GCP

If for a given image the intrinsics of the camera are known, and also the longitude and latitude (and optionally the
heights above the datum) of its corners (or of some other pixels in the image), one can bypass the camera_solve
tool and use bundle_adjust to get a rough initial camera position and orientation. This simple approach is often
beneficial when, for example, one has historical images with rough geo-location information. Once a rough camera is
created for each image, the cameras can then be bundle-adjusted jointly to refine them.

To achieve this, one creates a camera file, say called init.tsai, with only the intrinsics, and using trivial values for
the camera center and rotation matrix:

VERSION_3
fu = 28.429
fv = 28.429
cu = 17.9712
cv = 11.9808
u_direction = 1 0 0
v_direction = 0 1 0
w_direction = 0 0 1
C = 0 0 0
R = 1 0 0 0 1 0 0 0 1
pitch = 0.0064
Photometrix
xp = 0.004
yp = -0.191
k1 = 1.31024e-04
k2 = -2.05354e-07
k3 = -5.28558e-011
p1 = 7.2359e-006
p2 = 2.2656e-006
b1 = 0.0
b2 = 0.0

Next, one creates a ground control points (GCP) file (Section 13.5.1), named, for example, gcp.gcp, containing the
pixel positions and longitude and latitude of the corners or other known pixels (the heights above datum can be set to
zero if not known). Here is a sample file, where the image is named img.tif (below the latitude is written before
the longitude).

# id lat lon height sigmas image corners sigmas
1 37.62 -122.38 0 1 1 1 img.tif 0 0 1 1
2 37.62 -122.35 0 1 1 1 img.tif 2560 0 1 1
3 37.61 -122.35 0 1 1 1 img.tif 2560 1080 1 1
4 37.61 -122.39 0 1 1 1 img.tif 0 1080 1 1

Such a file can be created with stereo_gui (Section 13.47.2).

One runs bundle adjustment with this data:

bundle_adjust -t nadirpinhole img.tif init.tsai gcp.gcp -o ba/run \
--datum WGS84 --inline-adjustments --camera-weight 0 --max-iterations 0 \
--robust-threshold 10

which will write the desired correctly oriented camera file. Using a positive number of iterations will refine the camera.

It is important to look at the residual file:

run/run-final_residuals_no_loss_function_pointmap_point_log.csv
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after this. The third column in this file is the optimized heights above the datum, while the fourth column has the
reprojection errors from the corners on the ground into the camera.

If bundle adjustment is invoked with a positive number of iterations, and with a small value for the robust threshold,
it tends to optimize only some of the corners and ignore the others, resulting in a large reprojection error, which is
not desirable. If however, this threshold is too large, it may try to optimize the camera too aggressively, resulting in a
poorly placed camera.

Sometimes it works to just get a rough camera estimate from this tool for each image individually, using zero iterations,
as above, and then bundle adjust all images together with the obtained rough cameras and possibly also using the GCP
files, this time with a positive number of iterations.

One can also use the bundle adjustment option --fix-gcp-xyz to not move the GCP during optimization, hence
forcing the cameras to move more to conform to them.

ASP provides a tool named cam_gen which can also create a pinhole camera as above, and, in addition, is able to
extract the heights of the corners from a DEM (Section 13.8).

9.5 Solving For Intrinsic Camera Parameters

If nothing is known about the intrinsic camera parameters, it may be possible to guess them with some experimentation.
One can assume that the distortion is non-existent, and that the optical center is at the image center, which makes it
possible to compute cu and cv. The pitch can be set to some small number, say 10−3 or 10−4. The focal length
can be initialized to equal cu or a multiple of it. Then camera_solve can be invoked, followed by stereo,
point2mesh, and point2dem --errorimage. If, at least towards the center of the image, things are not
exploding, we are on a good track.

Later, the camera parameters, especially the focal length, can be modified manually, and instead of using
camera_solve again, just bundle_adjust can be called using the camera models found earlier, with the options
to float some of the intrinsics, that is using --solve-intrinsics and --intrinsics-to-float.

If the overall results look good, but the intersection error after invoking point2dem around the image corners looks
large, it is time to use some distortion model and float it, again using bundle_adjust. Sometimes if invoking this
tool over many iterations the optical center and focal length may drift, and hence it may be helpful to have them fixed
while solving for distortion.

If a pre-existing DEM is available, the tool geodiff can be used to compare it with what ASP is creating.

Such a pre-existing DEM can be used as a constraint when solving for intrinsics, as described in Section 8.2.1.
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CHAPTER

TEN

STEREO PROCESSING EXAMPLES

This chapter showcases a variety of results that are possible when processing different data sets with the Stereo
Pipeline. It is also a shortened guide that shows the commands used to process specific mission data. There is no
definitive method yet for making elevation models as each stereo pair is unique. We hope that the following sections
serve as a cookbook for strategies that will get you started in processing your own data. We recommend that you
second check your results against another source.

10.1 Guidelines for Selecting Stereo Pairs

When choosing image pairs to process, images that are taken with similar viewing angles, lighting conditions, and
significant surface coverage overlap are best suited for creating terrain models [BeckerArchinalHare+15]. Depending
on the characteristics of the mission data set and the individual images, the degree of acceptable variation will differ.
Significant differences between image characteristics increases the likelihood of stereo matching error and artifacts,
and these errors will propagate through to the resulting data products.

Although images do not need to be map-projected before running the stereo program, we recommend that you do
run cam2map (or cam2map4stereo.py) beforehand, especially for image pairs that contain large topographic
variation (and therefore large disparity differences across the scene, e.g., Valles Marineris). Map-projection is es-
pecially necessary when processing HiRISE images. This removes the large disparity differences between HiRISE
images and leaves only the small detail for the Stereo Pipeline to compute. Remember that ISIS can work backwards
through a map-projection when applying the camera model, so the geometric integrity of your images will not be
sacrificed if you map-project first.

An alternative way of map-projection, that applies to non-ISIS images as well, is with the mapproject tool (Section
5.1.7).

Excessively noisy images will not correlate well, so images should be photometrically calibrated in whatever fashion
suits your purposes. If there are photometric problems with the images, those photometric defects can be misinter-
preted as topography.

Remember, in order for stereo to process stereo pairs in ISIS cube format, the images must have had SPICE data
associated by running ISIS’s spiceinit program run on them first.

87



Ames Stereo Pipeline Documentation, Release 3.0.0

10.2 Mars Reconnaissance Orbiter HiRISE

HiRISE is one of the most challenging cameras to use when making 3D models because HiRISE exposures can be
several gigabytes each. Working with this data requires patience as it will take time.

One important fact to know about HiRISE is that it is composed of multiple linear CCDs that are arranged side by
side with some vertical offsets. These offsets mean that the CCDs will view some of the same terrain but at a slightly
different time and a slightly different angle. Mosaicking the CCDs together to a single image is not a simple process
and involves living with some imperfections.

One cannot simply use the HiRISE RDR products, as they do not have the required geometric stability. Instead, the
HiRISE EDR products must be assembled using ISIS noproj. The USGS distributes a script in use by the HiRISE
team that works forward from the team-produced ‘balance’ cubes, which provides a de-jittered, noproj’ed mosaic of
a single observation, which is perfectly suitable for use by the Stereo Pipeline (this script was originally engineered
to provide input for SOCET SET). However, the ‘balance’ cubes are not available to the general public, and so we
include a program (hiedr2mosaic.py, written in Python) that will take PDS available HiRISE EDR products and
walk through the processing steps required to provide good input images for stereo.

The program takes all the red CCDs and projects them using the ISIS noproj command into the perspective of the
RED5 CCD. From there, hijitreg is performed to work out the relative offsets between CCDs. Finally the CCDs
are mosaicked together using the average offset listed from hijitreg using the handmos command, and the mosaic
is normalized with cubenorm. Below is an outline of the processing.

hi2isis # Import HiRISE IMG to Isis
hical # Calibrate
histitch # Assemble whole-CCD images from the channels
spiceinit
spicefit # For good measure
noproj # Project all images into perspective of RED5
hijitreg # Work out alignment between CCDs
handmos # Mosaic to single file
cubenorm # Normalize the mosaic

To use our script, first download a set of HiRISE data. Here is an example, using wget to fetch all RED CCDs for a
dataset and process them.

wget -r -l1 -np \
"http://hirise-pds.lpl.arizona.edu/PDS/EDR/ESP/ORB_029400_029499/ESP_029421_2300/" \
-A "*RED*IMG"

Alternately, you can pass the --download-folder option to hiedr2mosaic.py and pass in the URL of the
web page containing the EDR files as the only positional argument. This will cause the tool to first download all of
the RED CCD images to the specified folder and then continue with processing.

hiedr2mosaic.py --download-folder hirise_example/ \
http://hirise-pds.lpl.arizona.edu/PDS/EDR/ESP/ORB_029400_029499/ESP_029421_2300/

Assuming you downloaded the files manually, go to the directory containing the files. You can run the
hiedr2mosaic.py program without any arguments to view a short help statement, with the -h option to view
a longer help statement, or just run the program on the EDR files like so:

hiedr2mosaic.py *.IMG

If you have more than one observation’s worth of EDRs in that directory, then limit the program to just one observa-
tion’s EDRs at a time, e.g. hiedr2mosaic.py PSP_001513_1655*IMG. If you run into problems, try using
the -k option to retain all of the intermediary image files to help track down the issue. The hiedr2mosaic.py
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program will create a single mosaic file with the extension .mos_hijitreged.norm.cub. Be warned that the
operations carried out by hiedr2mosaic.py can take many hours to complete on the very large HiRISE images.

An example of using ASP with HiRISE data is included in the examples/HiRISE directory (just type ’make’
there).

10.2.1 Columbia Hills

HiRISE observations PSP_001513_1655 and PSP_001777_1650 are on the floor of Gusev Crater and cover the area
where the MER Spirit landed and has roved, including the Columbia Hills.

Fig. 10.1: Example output using HiRISE images PSP_001513_1655 and PSP_001777_1650 of the Columbia Hills.

Commands

Download all 20 of the RED EDR .IMG files for each observation.

ISIS> hiedr2mosaic.py PSP_001513_1655_RED*.IMG
ISIS> hiedr2mosaic.py PSP_001777_1650_RED*.IMG
ISIS> cam2map4stereo.py PSP_001777_1650_RED.mos_hijitreged.norm.cub \

PSP_001513_1655_RED.mos_hijitreged.norm.cub
ISIS> parallel_stereo PSP_001513_1655.map.cub \

PSP_001777_1650.map.cub result/output
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stereo.default

The stereo.default example file (Section 14) should apply well to HiRISE. Just set alignment-method to none if
using map-projected images. If you are not using map-projected images, set alignment-method to homography
or affineepipolar. The corr-kernel value can usually be safely reduced to 21 pixels to resolve finer detail
and faster processing for images with good contrast.

10.3 Mars Reconnaissance Orbiter CTX

CTX is a moderate camera to work with. Processing times for CTX can be pretty long when using Bayes EM sub-
pixel refinement. Otherwise the disparity between images is relatively small, allowing efficient computation and a
reasonable processing time.

10.3.1 North Terra Meridiani

In this example, we use map-projected images. Map-projecting the images is the most reliable way to align the
images for correlation. However when possible, use non-map-projected images with the alignment-method
affineepipolar option. This greatly reduces the time spent in triangulation. For all cases using linescan cameras,
triangulation of map-projected images is 10x slower than non-map-projected images.

This example is distributed in the examples/CTX directory (type ’make’ there to run it).

Fig. 10.2: Example output possible with the CTX imager aboard MRO.
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Commands

Download the CTX images P02_001981_1823_XI_02N356W.IMG and P03_002258_1817_XI_01N356W.IMG from
the PDS.

ISIS> mroctx2isis from=P02_001981_1823_XI_02N356W.IMG to=P02_001981_1823.cub
ISIS> mroctx2isis from=P03_002258_1817_XI_01N356W.IMG to=P03_002258_1817.cub
ISIS> spiceinit from=P02_001981_1823.cub
ISIS> spiceinit from=P03_002258_1817.cub
ISIS> ctxcal from=P02_001981_1823.cub to=P02_001981_1823.cal.cub
ISIS> ctxcal from=P03_002258_1817.cub to=P03_002258_1817.cal.cub

(Here one can optionally run ctxevenodd on the cal.cub files, if needed.)

ISIS> cam2map4stereo.py P02_001981_1823.cal.cub P03_002258_1817.cal.cub
ISIS> parallel_stereo P02_001981_1823.map.cub P03_002258_1817.map.cub \

results/out

stereo.default

The stereo.default example file (Section 14) works generally well with all CTX pairs. Just set alignment-method
to homography or affineepipolar.

10.4 Automated Processing of HiRISE and CTX

While he was at the University of Chicago, David Mayer developed a set of scripts for automating Stereo Pipeline
for CTX and HiRISE images. Those scripts and more information can now be found at https://github.com/
USGS-Astrogeology/asp_scripts.

10.5 Mars Global Surveyor MOC-NA

In the Stereo Pipeline Tutorial in Section 3, we showed you how to process a narrow angle MOC stereo pair that
covered a portion of Hrad Vallis. In this section we will show you more examples, some of which exhibit a problem
common to stereo pairs from linescan imagers: spacecraft jitter is caused by oscillations of the spacecraft due
to the movement of other spacecraft hardware. All spacecraft wobble around to some degree but some are particularly
susceptible.

Jitter causes wave-like distortions along the track of the satellite orbit in DEMs produced from linescan camera images.
This effect can be very subtle or quite pronounced, so it is important to check your data products carefully for any sign
of this type of artifact. The following examples will show the typical distortions created by this problem.

Note that the science teams of HiRISE and LROC are actively working on detecting and correctly modeling jitter in
their respective SPICE data. If they succeed in this, the distortions will still be present in the raw images, but the jitter
will no longer produce ripple artifacts in the DEMs produced using ours or other stereo reconstruction software.
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10.5.1 Ceraunius Tholus

Ceraunius Tholus is a volcano in northern Tharsis on Mars. It can be found at 23.96 N and 262.60 E. This DEM
crosses the volcano’s caldera.

Fig. 10.3: Example output for MOC-NA of Ceraunius Tholus. Notice the presence of severe washboarding artifacts
due to spacecraft jitter.

Commands

Download the M08/06047 and R07/01361 images from the PDS.

ISIS> moc2isis f=M0806047.img t=M0806047.cub
ISIS> moc2isis f=R0701361.img t=R0701361.cub
ISIS> spiceinit from=M0806047.cub
ISIS> spiceinit from=R0701361.cub
ISIS> cam2map4stereo.py M0806047.cub R0701361.cub
ISIS> parallel_stereo M0806047.map.cub R0701361.map.cub result/output

stereo.default

The stereo.default example file (Section 14) works generally well with all MOC-NA pairs. Just set
alignment-method to none when using map-projected images. If the images are not map-projected, use
homography or affineepipolar.
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10.6 Mars Exploration Rovers

The Mars Exploration Rovers (MER) have several cameras on board and they all seem to have a stereo pair. With
ASP you are able to process the PANCAM, NAVCAM, and HAZCAM camera images. ISIS has no telemetry or
camera intrinsic supports for these images. That however is not a problem as their raw images contain the cameras’
information in JPL’s CAHV, CAHVOR, and CHAVORE formats.

These cameras are all variations of a simple pinhole camera model so they are processed with ASP in the Pinhole
session instead of the usual ISIS. ASP only supports creating of point clouds. The *-PC.tif is a raw point cloud with
the first 3 channels being XYZ in the rover site’s coordinate frame. We don’t support the creation of DEMs from these
images and that is left as an exercise for the user.

An example of using ASP with MER data is included in the examples/MER directory (just type ’make’ there).

10.6.1 PANCAM, NAVCAM, HAZCAM

All of these cameras are processed the same way. We’ll be showing 3D processing of the front hazard cams. The
only new things in the pipeline is the new executable mer2camera along with the use of alignment-method
epipolar. This example is also provided in the MER data example directory.

Fig. 10.4: Example output possible with the front hazard cameras.

Commands

Download 2f194370083effap00p1214l0m1.img and 2f194370083effap00p1214r0m1.img from the PDS.

ISIS> mer2camera 2f194370083effap00p1214l0m1.img
ISIS> mer2camera 2f194370083effap00p1214r0m1.img
ISIS> parallel_stereo 2f194370083effap00p1214l0m1.img \

2f194370083effap00p1214r0m1.img \
2f194370083effap00p1214l0m1.cahvore \
2f194370083effap00p1214r0m1.cahvore \

fh01/fh01
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10.6.2 stereo.default

The default stereo settings will work but change the following options. The universe option filters out points that are
not triangulated well because they are too close to the robot’s hardware or are extremely far away:

alignment-method epipolar
force-use-entire-range

# This deletes points that are too far away
# from the camera to truly triangulate.
universe-center Camera
near-universe-radius 0.7
far-universe-radius 80.0

10.7 K10

K10 is an Earth-based research rover within the Intelligent Robotics Group at NASA Ames, the group ASP developers
belong to. The cameras on this rover use a simple Pinhole model. The use of ASP with these cameras is illustrated in
the examples/K10 directory (just type ’make’ there). Just as for the MER datatset (Section 10.6), only the creation
of a point cloud is supported.

10.8 Lunar Reconnaissance Orbiter LROC NAC

10.8.1 Lee-Lincoln Scarp

This stereo pair covers the Taurus-Littrow valley on the Moon where, on December 11, 1972, the astronauts of Apollo
17 landed. However, this stereo pair does not contain the landing site. It is slightly west; focusing on the Lee-Lincoln
scarp that is on North Massif. The scarp is an 80 m high feature that is the only visible sign of a deep fault.

Commands

Download the EDRs for the left and right CCDs for observations M104318871 and M104318871 from http://wms.
lroc.asu.edu/lroc/search. Alternatively you can search by original IDs of 2DB8 and 4C86 in the PDS.

All ISIS preprocessing of the EDRs is performed via the lronac2mosaic.py command. This runs
lronac2isis, lronaccal, lronacecho, spiceinit, noproj, and handmos to create a stitched unpro-
jected image for a single observation. In this example we don’t map-project the images as ASP can usually get good
results. More aggressive terrain might require an additional cam2map4stereo.py step.

ISIS> lronac2mosaic.py M104318871LE.img M104318871RE.img
ISIS> lronac2mosaic.py M104311715LE.img M104311715RE.img
ISIS> parallel_stereo M104318871LE*.mosaic.norm.cub \

M104311715LE*.mosaic.norm.cub result/output \
--alignment-method affineepipolar

94 Chapter 10. Stereo Processing Examples

http://wms.lroc.asu.edu/lroc/search
http://wms.lroc.asu.edu/lroc/search


Ames Stereo Pipeline Documentation, Release 3.0.0

Fig. 10.5: Example output possible with a LROC NA stereo pair, using both CCDs from each observation courtesy of
the lronac2mosaic.py tool.

stereo.default

The defaults work generally well with LRO-NAC pairs, so you don’t need to provide a stereo.default file.
Map-projecting is optional. When map-projecting the images use alignment-method none, otherwise use
alignment-method affineepipolar. Better map-project results can be achieved by projecting on a higher
resolution elevation source like the WAC DTM. This is achieved using the ISIS command demprep and attaching to
cube files via spiceinit’s SHAPE and MODEL options.

10.9 Apollo 15 Metric Camera Images

Apollo Metric images were all taken at regular intervals, which means that the same stereo.default can be used
for all sequential pairs of images. Apollo Metric images are ideal for stereo processing. They produce consistent,
excellent results.

The scans performed by ASU are sufficiently detailed to exhibit film grain at the highest resolution. The amount of
noise at the full resolution is not helpful for the correlator, so we recommend subsampling the images by a factor of 4.

Currently the tools to ingest Apollo TIFFs into ISIS are not available, but these images should soon be released into
the PDS for general public usage.

10.9. Apollo 15 Metric Camera Images 95



Ames Stereo Pipeline Documentation, Release 3.0.0

10.9.1 Ansgarius C

Ansgarius C is a small crater on the west edge of the far side of the Moon near the equator. It is east of Kapteyn A and
B.

Fig. 10.6: Example output possible with Apollo Metric frames AS15-M-2380 and AS15-M-2381.

Commands

Process Apollo TIFF files into ISIS.

ISIS> reduce from=AS15-M-2380.cub to=sub4-AS15-M-2380.cub sscale=4 lscale=4
ISIS> reduce from=AS15-M-2381.cub to=sub4-AS15-M-2381.cub sscale=4 lscale=4
ISIS> spiceinit from=sub4-AS15-M-2380.cub
ISIS> spiceinit from=sub4-AS15-M-2381.cub
ISIS> parallel_stereo sub4-AS15-M-2380.cub sub4-AS15-M-2381.cub result/output
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stereo.default

The stereo.default example file (Section 14) works generally well with all Apollo pairs. Just set
alignment-method to homography or affineepipolar.

10.10 Mars Express High Resolution Stereo Camera (HRSC)

The HRSC camera on the Mars Express satellite is a complicated system, consisting of multiple channels pointed in
different directions plus another super resolution channel. The best option to create DEMs is to use the two dedicated
stereo channels. These are pointed ahead of and behind the nadir channel and collect a stereo observation in a single
pass of the satellite. Data can be downloaded from the Planetary Data System (PDS) http://pds-geosciences.wustl.
edu/missions/mars_express/hrsc.htm or you can use the online graphical tool located at http://hrscview.fu-berlin.de/
cgi-bin/ion-p?page=entry2.ion. Since each observation contains both stereo channels, one observation is sufficient to
create a DEM.

HRSC data is organized into categories. Level 2 is radiometrically corrected, level 3 is corrected and map projected
onto MOLA, and level 4 is corrected and map projected on to a DEM created from the HRSC data. You should use
the level 2 data for creating DEMs with ASP. If you would like to download one of the already created DEMs, it may
be easiest to use the areoid referenced version (.da4 extension) since that is consistent with MOLA.

What follows is an example for how to process HRSC data. One starts by fetching the two stereo channels from:

http://pds-geosciences.wustl.edu/mex/mex-m-hrsc-3-rdr-v3/mexhrs_1001/data/1995/h1995_
↪→0000_s12.img
http://pds-geosciences.wustl.edu/mex/mex-m-hrsc-3-rdr-v3/mexhrs_1001/data/1995/h1995_
↪→0000_s22.img

Fig. 10.7: Sample outputs from a cropped region of HRSC frame 1995. Left: Cropped input. Center: Block matching
with subpixel mode 3. Right: MGM algorithm with cost mode 3.

10.10.1 Commands

You may need to download the HRSC kernel files in case using web=true with spiceinit does not work. You
will also probably need to include the ckpredicted=true flag with spiceinit. HRSC images are large and
may have compression artifacts so you should experiment on a small region to make sure your stereo parameters are
working well. For this frame, the MGM stereo algorithm performed better than block matching with subpixel mode 3.

ISIS> hrsc2isis from=h1995_0000_s12.img to=h1995_0000_s12.cub
ISIS> hrsc2isis from=h1995_0000_s22.img to=h1995_0000_s22.cub
ISIS> spiceinit from=h1995_0000_s12.cub ckpredicted=true
ISIS> spiceinit from=h1995_0000_s22.cub ckpredicted=true
ISIS> parallel_stereo h1995_0000_s12.cub h1995_0000_s22.cub \

--stereo-algorithm 2 --cost-mode 3 mgm/out
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[fig:hrsc_example]

10.11 Cassini ISS NAC

This is a proof of concept showing the strength of building the Stereo Pipeline on top of ISIS. Support for processing
ISS NAC stereo pairs was not a goal during our design of the software, but the fact that a camera model exists in ISIS
means that it too can be processed by the Stereo Pipeline.

Identifying stereo pairs from spacecraft that do not orbit their target is a challenge. We have found that one usually
has to settle with images that are not ideal: different lighting, little perspective change, and little or no stereo parallax.
So far we have had little success with Cassini’s data, but nonetheless we provide this example as a potential starting
point.

10.11.1 Rhea

Rhea is the second largest moon of Saturn and is roughly a third the size of our own Moon. This example shows, at the
top right of both images, a giant impact basin named Tirawa that is 220 miles across. The bright white area south of
Tirawa is ejecta from a new crater. The lack of texture in this area poses a challenge for our correlator. The results are
just barely useful: the Tirawa impact can barely be made out in the 3D data while the new crater and ejecta become
only noise.

Commands

Download the N1511700120_1.IMG and W1567133629_1.IMG images and their label (.LBL) files from the PDS.

ISIS> ciss2isis f=N1511700120_1.LBL t=N1511700120_1.cub
ISIS> ciss2isis f=W1567133629_1.LBL t=W1567133629_1.cub
ISIS> cisscal from=N1511700120_1.cub to=N1511700120_1.lev1.cub
ISIS> cisscal from=W1567133629_1.cub to=W1567133629_1.lev1.cub
ISIS> fillgap from=W1567133629_1.lev1.cub to=W1567133629_1.fill.cub %Only one image

%exhibits the
↪→problem
ISIS> cubenorm from=N1511700120_1.lev1.cub to=N1511700120_1.norm.cub
ISIS> cubenorm from=W1567133629_1.fill.cub to=W1567133629_1.norm.cub
ISIS> spiceinit from=N1511700120_1.norm.cub
ISIS> spiceinit from=W1567133629_1.norm.cub
ISIS> cam2map from=N1511700120_1.norm.cub to=N1511700120_1.map.cub
ISIS> cam2map from=W1567133629_1.norm.cub map=N1511700120_1.map.cub \
ISIS> to=W1567133629_1.map.cub matchmap=true
ISIS> parallel_stereo N1511700120_1.map.equ.cub W1567133629_1.map.equ.cub result/rhea

stereo.default

### PREPROCESSING
alignment-method none
force-use-entire-range
individually-normalize

### CORRELATION
prefilter-mode 2
prefilter-kernel-width 1.5
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Fig. 10.8: Example output of what is possible with Cassini’s ISS NAC. Upper left: original left image. Upper right:
original right image. Lower left: map-projected left image. Lower right: 3D Rendering of the point cloud.
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cost-mode 2

corr-kernel 25 25
corr-search -55 -2 -5 10

subpixel-mode 3
subpixel-kernel 21 21

### FILTERING
rm-half-kernel 5 5
rm-min-matches 60 # Units = percent
rm-threshold 3
rm-cleanup-passes 1

10.12 Community Sensor Model (CSM)

The Community Sensor Model (CSM), established by the U.S. defense and intelligence community, has the goal of
standardizing camera models for various remote sensor types [Gro07]. It provides a well-defined application program
interface (API) for multiple types of sensors and has been widely adopted by Earth remote sensing software systems
[HK17][LMH20]. ASP supports CSM by using the USGS implementation (https://github.com/USGS-Astrogeology/
usgscsm) that we ship with our software.

CSM is handled via dynamically loaded plugins. Hence, if a user has a new sensor model, ASP should, in principle,
be able to use it as soon as a supporting plugin is added to the existing software, without having to rebuild ASP or
modify it otherwise. In practice, while this logic is implemented, ASP defaults to using only usgscsm, though only
minor changes are needed to support additional implementations.

Each stereo pair to be processed by ASP should be made up of two images (for example in .cub format) and two
plain text camera files with .json extension. The CSM information is contained in the .json files and it determines
which plugin to load to use with those cameras. More details are available at the USGS ISIS CSM repository mentioned
earlier.

What follows is an example of using this sensor model for Mars images, specifically for the CTX camera. The images
are regular .cub files as in the tutorial in Section 3, hence the only distinction is that cameras are stored as .json
files.

We will work with the dataset pair:

J03_045994_1986_XN_18N282W.cub J03_046060_1986_XN_18N282W.cub

which, for simplicity, we will rename to left.cub and right.cub and the same for the associated camera files.

One runs the stereo and terrain generation steps as usual:

parallel_stereo left.cub right.cub left.json right.json run/run
point2dem -r mars --stereographic --proj-lon 77.4 \

--proj-lat 18.4 run/run-PC.tif

The actual stereo session used is csm, and here it will be auto-detected based on the extension of the camera files. For
point2dem we chose to use a stereographic projection centered at the area of interest. One of course could use the
fancier MGM algorithm by running this example with parallel_stereo and --stereo-algorithm 2.

One can also run stereo with mapprojected images (Section 5.1.7). The first step would be to create a low-resolution
smooth DEM from the previous cloud:
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point2dem -r mars --stereographic --proj-lon 77.4 \
--proj-lat 18.4 run/run-PC.tif --tr 120 \
-o run/run-smooth

followed by mapprojecting onto it and redoing stereo:

mapproject run/run-smooth-DEM.tif left.cub left.json left.map.tif
mapproject run/run-smooth-DEM.tif right.cub right.json right.map.tif
parallel_stereo left.map.tif right.map.tif left.json right.json \

run_map/run run/run-smooth-DEM.tif

10.12.1 Exporting CSM model state after bundle adjustment and alignment

ASP’s bundle adjustment program (Section 13.5) normally writes plain text .adjust files which encode how the
position and orientation of the cameras were modified. If invoked for CSM cameras, additional files with extension
.adjusted_state.json are saved in the same output directory, which contain the the model state from the input
CSM cameras with the adjustments applied to them. This only applies to CSM linescan models supported by ISIS.

It is important to note that the the model state of a CSM camera and the CSM camera itself, while both stored on
disk as JSON files, are not the same thing. The CSM camera file (also called the CSM ISD file) has the transforms
from sensor coordinates to J2000 and from J2000 to ECEF. These are then combined together to form the model state,
which has the transforms from the sensor to ECEF. The model state is used to project ground points into the camera
and vice-versa, so it is sufficient for the purposes of bundle adjustment and stereo.

ASP’s stereo and bundle adjustment programs can, in addition to CSM ISD camera model files, also load such model
state files, either as previously written by ASP or from an external source (it will auto-detect the type from the format
of the JSON files). Hence, the model state is a convenient format for data exchange, while being less complex than
the ISD format.

If ASP’s stereo program is used to create a point cloud from images and CSM cameras, and then that point cloud
has a transform applied to it, such as with pc_align, the same transform can be applied to the model states for the
two cameras, which is then saved to disk as earlier. That is accomplished by invoking bundle adjustment with the input
images and cameras, also with this transform, with zero iterations:

bundle_adjust left.cub right.cub left.json right.json \
--initial-transform transform.txt \
--num-iterations 0 -o ba/run

This will save the state files ba/run-left.adjusted_state.json and ba/run-right.
adjusted_state.json.

In case first bundle adjustment was used, then stereo was run with bundle adjusted cameras, then pc_align was
invoked on the resulting point cloud, obtaining an alignment transform, and is desired to create model state files having
both the effect of bundle adjustment and subsequent alignment, one can invoke bundle adjustment just as above, with
an initial transform and zero iterations, but use not the original left.json and right.json camera files, but the
model state files after the initial bundle adjustment which encode that adjustment. (See also Section 13.39.11 for how
to combine bundle adjustment with the alignment transform.)
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10.12.2 Creating CSM cameras from ISIS .cub files

CSM camera files can be created from ISIS cameras follows. Run the ISIS spiceinit command as:

spiceinit from = camera.cub shape = ellipsoid

Then create a conda environment for the ale package:

conda create -c conda-forge -n ale_env python=3.6 ale
conda activate ale_env

(other versions of Python may result in a runtime error later). Invoke the version of Python for this environment, whose
path may be:

$HOME/miniconda3/envs/ale_env/bin/python

on the Python script:

import ale

cub_file = 'camera.cub'
isd_file = 'camera.json'
usgscsm_str = ale.loads(cub_file)

print("Writing: " + isd_file)
with open(isd_file, 'w') as isd_file:
isd_file.write(usgscsm_str)

which reads camera.cub and writes camera.json. To evaluate how well the obtained CSM camera approximates
the ISIS camera model, run the program csm_test shipped with ASP as follows:

csm_test --sample-rate 100 camera.cub camera.json

This compares the camera center and ray direction at a set of sampled pixels for each of the two models, then projects a
set of pixels to the ground using the ISIS camera, back-projects the resulting point into the CSM camera, and compares
this with the original pixel, then this process is repeated with the two cameras reversed. The pixel errors are expected
to be at most on the order of 0.2 pixels.

10.13 DigitalGlobe/Maxar Images

Processing of DigitalGlobe/Maxar images is described extensively in the tutorial in Section 4.

10.14 RPC Images, including GeoEye, Airbus, Cartosat-1, and
PeruSat-1

Some vendors, such as GeoEye with its Ikonos and two GeoEye satellites, and Airbus, with its SPOT and Pleiades
satellites, the Indian Cartosat-1 satellite provide only Rational Polynomial Camera (RPC) models. DigitalGlobe/Maxar
provides both exact linescan camera models and their RPC approximations and ASP supports both. Apparently such
is the case as well for PeruSat-1, but ASP supports only the RPC model for this satellite.

RPC represents four 20-element polynomials that map geodetic coordinates (longitude-latitude-height above datum)
to image pixels. Since they are easy to implement and fast to evaluate, RPC represents a universal camera model
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providing a simple approximation to complex exact camera models that are unique to each vendor. The only downside
is that it has less precision in our opinion compared to the exact camera models.

In addition to supporting vendor-provided RPC models, ASP provides a tool named cam2rpc (Section 13.7), that can
be used to create RPC camera models from ISIS and all other cameras that ASP understands, including for non-Earth
planets (currently only the Earth, Moon and Mars are supported). In such situations, the planet datum must be passed
to the tools reading the RPC models, as shown below.

Our RPC read driver is GDAL. If the command gdalinfo can identify the RPC information inside the headers of
your image files (whether that information is actually embedded in the images, or stored separately in some auxiliary
files with a convention GDAL understands), ASP will likely be able to see it as well. This means that sometimes we
can get away with only providing a left and right image, with no extra files containing camera information. This is
specifically the case for GeoEye, and Cartosat-1. Otherwise, the camera files must be specified separately in XML
files, as done for DigitalGlobe/Maxar images (Section 4.1) and PeruSat-1.

For a first test, you can download an example stereo pair from GeoEye’s website at [Geo]. When we accessed the
site, we downloaded a GeoEye-1 image of Hobart, Australia. As previously stated in the DigitalGlobe/Maxar section,
these types of images are not ideal for ASP. This is both a forest and a urban area which makes correlation difficult.
ASP was designed more for modeling bare rock and ice. Any results we produce in other environments is a bonus but
is not our objective.

Fig. 10.9: Example colorized height map and ortho image output.

10.14.1 Command

parallel_stereo -t rpc po_312012_pan_0000000.tif \
po_312012_pan_0010000.tif geoeye/geoeye

(For Cartosat data sometimes one should overwrite the *RPC.TXT files that are present with the ones that end in
RPC_ORG.TXT.)

If RPC cameras are specified separately, the stereo command looks as follows. This example is for Mars, with the
RPC models created with cam2rpc from ISIS cubes. So the datum has to be set.

parallel_stereo -t rpc --datum D_MARS left.tif right.tif \
left.xml right.xml run/run

For terrains having steep slopes, we recommend that images be map-projected onto an existing DEM before running
stereo. This is described in Section 5.1.7. As above, if the cameras are specified separately (as xml files), they should
be on the command line, otherwise they can be omitted.

If the RPC coefficients are not stored in the original Tif images, but rather in associated .RPB or _RPC.TXT files,
mapproject creates these files automatically for each map-projected image.
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10.14.2 stereo.default

The stereo.default example file (Section 14) works generally well with all GeoEye pairs. Just set
alignment-method to affineepipolar or homography.

10.14.3 Airbus tiled images

With recent Airbus Pleiades data, each of the the left and right images may arrive broken up into .JP2 tiles, and they
would need to be mosaicked before being used. That can be done as follows (individually for the left and right stereo
image):

gdalbuildvrt mosaic.vrt *.JP2
gdal_translate -co TILED=YES -co BIGTIFF=IF_SAFER mosaic.vrt image.tif

10.15 SPOT5 Images

SPOT5 is a CNES (Space Agency of France) satellite launched on May 2002 and decommissioned in March 2015.
SPOT5 contained two High Resolution Stereoscopic (HRS) instruments with a ground resolution of 5 meters. These
two cameras were pointed forwards and backwards, allowing capture of a stereo image pair in a single pass of the
satellite.

ASP supports only images from the HRS sensors on SPOT5. These images come in two parts, the data file (extension
.bil or .tif) and the header file the data file (extension .dim). The data file can be either a plain binary file with
no header information or a GeoTIFF file. The header file is a plain text XML file. When using SPOT5 images with
ASP tools, pass in the data file as the image file and the header file as the camera model file.

All ASP tools can handle .bil images (and also .bip and .bsq) as long as a similarly named .dim file exists that
can be looked up. The lookup succeeds if, for example, the .dim and .bil files differ only by extension (lower or
upper case), or, as below, when an IMAGERY.BIL file has a corresponding METADATA file.

You can find a sample SPOT5 image at http://www.geo-airbusds.com/en/23-sample-imagery.

One issue to watch out for is that SPOT5 data typically comes in a standard directory structure where the image and
header files always have the same name. The header (camera model) files cannot be passed into the bundle_adjust
tool with the same file name even if they are in different folders. A simple workaround is to create symbolic links to
the original header files with different names:

> ln -s front/SEGMT01/METADATA.DIM front/SEGMT01/METADATA_FRONT.DIM
> ln -s back/SEGMT01/METADATA.DIM back/SEGMT01/METADATA_BACK.DIM
> bundle_adjust -t spot5 front/SEGMT01/IMAGERY.BIL back/SEGMT01/IMAGERY.BIL \

front/SEGMT01/METADATA_FRONT.DIM back/SEGMT01/METADATA_BACK.DIM -o ba_run/out
> parallel_stereo -t spot5 front/SEGMT01/IMAGERY.BIL back/SEGMT01/IMAGERY.BIL \

front/SEGMT01/METADATA_FRONT.DIM back/SEGMT01/METADATA_BACK.DIM \
st_run/out --bundle-adjust-prefix ba_run/out

You can also map project the SPOT5 images before they are passed to the stereo tool. In order to do so, you must
first use the add_spot_rpc tool to generate an RPC model approximation of the SPOT5 sensor model, then use the
spot5maprpc session type when running stereo on the map projected images.

> add_spot_rpc front/SEGMT01/METADATA.DIM -o front/SEGMT01/METADATA.DIM
> add_spot_rpc back/SEGMT01/METADATA.DIM -o back/SEGMT01/METADATA.DIM
> mapproject sample_dem.tif front/SEGMT01/IMAGERY.BIL front/SEGMT01/METADATA.DIM

front_map_proj.tif -t rpc
> mapproject sample_dem.tif back/SEGMT01/IMAGERY.BIL back/SEGMT01/METADATA.DIM
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back_map_proj.tif -t rpc
> parallel_stereo -t spot5maprpc front_map_proj.tif back_map_proj.tif \

front/SEGMT01/METADATA.DIM back/SEGMT01/METADATA.DIM \
st_run/out sample_dem.tif

Fig. 10.10: Cropped region of SPOT5 image and a portion of the associated stereo DEM overlaid on a low resolution
Bedmap2 DEM.

10.16 Dawn (FC) Framing Camera

This is a NASA mission to visit two of the largest objects in the asteroid belt, Vesta and Ceres. The framing camera on
board Dawn is quite small and packs only a resolution of 1024x1024 pixels. This means processing time is extremely
short. To its benefit, it seems that the mission planners leave the framing camera on taking shots quite rapidly. On a
single pass, they seem to usually take a chain of FC images that have a high overlap percentage. This opens the idea of
using ASP to process not only the sequential pairs, but also the wider baseline shots. Then someone could potentially
average all the DEMs together to create a more robust data product.

For this example, we downloaded the images FC21A0010191_11286212239F1T.IMG and
FC21A0010192_11286212639F1T.IMG

which show the Cornelia crater. We found these images by looking at the popular anaglyph shown on the Planetary
Science Blog [Mac12].
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Fig. 10.11: Example colorized height map and ortho image output.

10.16.1 Commands

First you must download the Dawn FC images from PDS.

ISIS> dawnfc2isis from=FC21A0010191_11286212239F1T.IMG \
to=FC21A0010191_11286212239F1T.cub

ISIS> dawnfc2isis from=FC21A0010192_11286212639F1T.IMG \
to=FC21A0010192_11286212639F1T.cub

ISIS> spiceinit from=FC21A0010191_11286212239F1T.cub
ISIS> spiceinit from=FC21A0010192_11286212639F1T.cub
ISIS> parallel_stereo FC21A0010191_11286212239F1T.cub \

FC21A0010192_11286212639F1T.cub stereo/stereo
ISIS> point2dem stereo-PC.tif --orthoimage stereo-L.tif \

--t_srs "+proj=eqc +lat_ts=-11.5 +a=280000 +b=229000 +units=m"

10.16.2 stereo.default

The stereo.default example file (Section 14) works well for this stereo pair. Just set alignment-method to
affineepipolar or homography.

10.17 ASTER Images

In this example we will describe how to process ASTER Level 1A VNIR images. The data can be obtained for free
from https://search.earthdata.nasa.gov/search. Select a region on the map, search for AST_L1A, and choose “ASTER
L1A Reconstructed Unprocessed Instrument Data V003”. (The same interface can be used to obtain pre-existing
ASTER DEMs.)

There are two important things to keep in mind when ordering the data. First, at the very last step, when finalizing
the order options, choose GeoTIFF as the data format, rather than HDF-EOS. This way the images and metadata will
come already extracted from the HDF file.

Second, note that ASP cannot process ASTER Level 1B images, as those images lack camera information.

Below, we will use the dataset AST_L1A_00307182000191236_20160404141337_21031 near San Luis
Reservoir in Northern California. This dataset will come as a directory containing TIFF images and meta-information
as text files. We use the tool aster2asp to parse it (also there is described the data contained in this directory):

aster2asp 030353697511879 -o out

This command will create 4 files, named:
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out-Band3N.tif out-Band3B.tif out-Band3N.xml out-Band3B.xml

We refer again to the tool’s documentation page regarding details of how these files were created.

Next, we run stereo. We can use either the exact camera model (-t aster), or its RPC approximation (-t rpc).
The former is much slower but more accurate.

parallel_stereo -t aster --subpixel-mode 3 out-Band3N.tif out-Band3B.tif \
out-Band3N.xml out-Band3B.xml out_stereo/run

or

parallel_stereo -t rpc --subpixel-mode 3 out-Band3N.tif out-Band3B.tif \
out-Band3N.xml out-Band3B.xml out_stereo/run

This is followed by DEM creation:

point2dem -r earth --tr 0.000277777777778 out_stereo/run-PC.tif

The value 0.000277777777778 is the desired output DEM resolution, specified in degrees. It is approximately 31
meters/pixel, the same as the publicly available ASTER DEM, and about twice the 15 meters/pixel image resolution.

Much higher quality results, but still not as detailed as the public ASTER DEM can be obtained by doing stereo as
before, followed by map-projection onto a coarser and smoother version of the obtained DEM, and then redoing stereo
with map-projected images (per the suggestions in Section 6). Using --subpixel-mode 2, while much slower,
yields the best results. The flow is as follows:

# Initial stereo
parallel_stereo -t aster --subpixel-mode 3 out-Band3N.tif out-Band3B.tif \

out-Band3N.xml out-Band3B.xml out_stereo/run

# Create a coarse and smooth DEM at 300 meters/pixel
point2dem -r earth --tr 0.0026949458523585 out_stereo/run-PC.tif \

-o out_stereo/run-300m

# Map-project onto this DEM at 10 meters/pixel
mapproject --tr 0.0000898315284119 out_stereo/run-300m-DEM.tif \

out-Band3N.tif out-Band3N.xml out-Band3N_proj.tif
mapproject --tr 0.0000898315284119 out_stereo/run-300m-DEM.tif \

out-Band3B.tif out-Band3B.xml out-Band3B_proj.tif

# Run stereo with the map-projected images with subpixel-mode 2
parallel_stereo -t aster --subpixel-mode 2 \

out-Band3N_proj.tif out-Band3B_proj.tif \
out-Band3N.xml out-Band3B.xml out_stereo_proj/run \
out_stereo/run-300m-DEM.tif

# Create the final DEM
point2dem -r earth --tr 0.000277777777778 out_stereo_proj/run-PC.tif

Here we could have again used -t rpc instead of -t aster. The map-projection was done using --tr 0.
0000898315284119 which is about 10 meters/pixel.

It is possible to increase the resolution of the final DEM slightly by instead map-projecting at 7 meters/pixel, hence
using:

--tr .0000628820698883
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or smaller correlation and subpixel-refinement kernels, that is:

--corr-kernel 15 15 --subpixel-kernel 25 25

instead of the defaults (21 21 and 35 35) but this comes with increased noise as well, and using a finer resolution
results in longer run-time.

We also tried to first bundle-adjust the cameras, using ASP’s bundle_adjust. We did not notice a noticeable
improvement in results.

10.18 SkySat Images

In this section we will discuss how to process the SkySat “Video” product.

It is very important to note that this is a very capricious dataset, so some patience will be needed to work with it. That
is due to the following factors:

• The baseline can be small, so the perspective of the left and right image can be too similar.

• The footprint on the ground is small, on the order of 2 km.

• The terrain can be very steep.

• The known longitude-latitude corners of each image have only a few digits of precision, which can result in
poor initial estimated cameras.

Below a recipe for how to deal with this data is described, together with things to watch for and advice when things
don’t work.

10.18.1 The input data

We will use as an illustration a mountainous terrain close to Breckenridge, Colorado. The dataset we fetched is called
s4_20181107T175036Z_video.zip. We chose to work with the following four images from it:

1225648254.44006968_sc00004_c1_PAN.tiff
1225648269.40892076_sc00004_c1_PAN.tiff
1225648284.37777185_sc00004_c1_PAN.tiff
1225648299.37995577_sc00004_c1_PAN.tiff

A sample picture from this image set is shown in Fig. 10.12.

It is very important to pick images that have sufficient difference in perspective, but which are still reasonably similar,
as otherwise the procedure outlined in this section will fail.

10.18.2 Initial camera models and a reference DEM

Based on vendor’s documentation, these images are 2560× 1080 pixels. We use the geometric center of the image as
the optical center, which turned out to be a reasonable enough assumption (verified by allowing it to float later). Since
the focal length is given as 3.6 m and the pixel pitch is 6.5× 10−6 m, the focal length in pixels is

3.6/6.5× 10−6 = 553846.153846.

We will fetch an SRTM DEM of the area, which will be used as a reference for registration, from location:

https://e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM/NorthAmerica/hgt_merge/
↪→n39w107.hgt.zip
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Fig. 10.12: An image used in the SkySat example. Reproduced with permission.

After unzipping it, we clip it to the area of interest:

gdal_translate -projwin -106.1679167 39.5120833 -106.0034722 39.3895833 \
n39w107.hgt ref_dem_clipped.tif

It is good to be a bit generous with clipping, so that the output DEM goes a few km or more beyond the region of
interest. If the region of interest is not fully covered by an SRTM tile, a neighboring one can be downloaded as well.
They can be merged with dem_mosaic and then cropped as before.

It appears that SRTM stores heights above the geoid, rather than above the datum. Hence it needs to be adjusted, as
follows:

dem_geoid --reverse-adjustment ref_dem_clipped.tif -o run/run
mv run/run-adj.tif ref_dem.tif

This may adjust the DEM by up to 100 meters.

Using the tool cam_gen (Section 13.8) bundled with ASP, we create an initial camera model and a GCP file (Section
13.5.1) for the first image as as follows:

cam_gen output/video/frames/1225648254.44006968_sc00004_c1_PAN.tiff \
--reference-dem ref_dem.tif --focal-length 553846.153846 \
--optical-center 1280 540 --pixel-pitch 1 --height-above-datum 4000 \
--refine-camera --frame-index output/video/frame_index.csv \
--gcp-std 1 -o v1.tsai --gcp-file v1.gcp

This tool works by reading the longitude and latitude of each image corner on the ground from the file
frame_index.csv, and finding the position and orientation of the camera that best fits this data. The camera
is written to v1.tsai. A GCP file is written to v1.gcp. This will help later with bundle adjustment.

In this command, the optical center and focal length are as mentioned earlier. The reference SRTM DEM is used to
infer the height above datum for each image corner based on its longitude and latitude. The height value specified
via --height-above-datum is used as a fallback option, if for example, the DEM is incomplete, and is not
strictly necessary for this example. This tool also accepts the longitude and latitude of the corners as an option, via
--lon-lat-values.
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The flag --refine-camera makes cam_gen solve a least square problem to refine the output camera. In some
rare cases it can get the refinement wrong, though by and large it it greatly improves the cameras.

For simplicity of notation, we will create a symbolic link from this image to the shorter name v1.tif, and the GCP
file needs to be edited to reflect this. The same will apply to the other files. We will have then four images, v1.tif,
v2.tif, v3.tif, v4.tif, and corresponding camera and GCP files.

A good sanity check is to visualize these computed cameras in ASP’s orbitviz tool. It can be invoked as:

orbitviz v[1-4].tif v[1-4].tsai -o orbit.kml

The output KML file can then be opened in Google Earth. We very strongly recommend this step, since it may catch
inaccurate cameras which will cause problems later.

Another important check is to map-project these images using the cameras and overlay them in stereo_gui on top
of the reference DEM. Here is an example for the first image:

mapproject --t_srs \
'+proj=stere +lat_0=39.4702 +lon_0=253.908 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m' \
ref_dem.tif v1.tif v1.tsai v1_map.tif

Notice that we used above a longitude and latitude around the area of interest. This will need to be modified for your
specific example.

10.18.3 Bundle adjustment

At this stage, the cameras should be about right, but not quite exact. We will take care of this using bundle adjustment.
We will invoke this tool twice. In the first call we will make the cameras self-consistent, which can make them move
away, however, and in the second call we will bring them back to the original location.

parallel_bundle_adjust -t nadirpinhole --disable-tri-ip-filter \
--disable-pinhole-gcp-init --skip-rough-homography \
--force-reuse-match-files --ip-inlier-factor 2.0 \
--ip-uniqueness-threshold 0.9 --ip-per-tile 2000 \
--datum WGS84 --inline-adjustments --camera-weight 0 \
--overlap-limit 10 --robust-threshold 10 \
--remove-outliers-params '75 3 4 5' \
--ip-num-ransac-iterations 1000 \
--num-passes 2 --num-iterations 2000 \
v[1-4].tif v[1-4].tsai -o ba/run

parallel_bundle_adjust -t nadirpinhole --datum WGS84 \
--force-reuse-match-files --inline-adjustments \
--num-passes 1 --num-iterations 0 \
--transform-cameras-using-gcp \
v[1-4].tif ba/run-v[1-4].tsai v[1-4].gcp -o ba/run

It is very important to not use the “pinhole” session here, rather “nadirpinhole” as the former does not filter well
interest points in this steep terrain.

The output optimized cameras will be named ba/run-run-v[1-4].tsai. The reason one has the word “run” re-
peated is because we ran this tool twice. The intermediate cameras from the first run were called ba/run-v[1-4].
tsai.

Here we use --ip-per-tile 2000 to create a lot of interest points. This will help with alignment later. It is
suggested that the user study all these options and understand what they do. We also used --robust-threshold
10 to force the solver to work the bigger errors. That is necessary since the initial cameras could be pretty inaccurate.

110 Chapter 10. Stereo Processing Examples



Ames Stereo Pipeline Documentation, Release 3.0.0

It is very important to examine the residual file named:

ba/run-final_residuals_no_loss_function_pointmap_point_log.csv

Here, the third column are the heights of triangulated interest points, while the fourth column are the reprojection
errors. Normally these errors should be a fraction of a pixel, as otherwise the solution did not converge. The last
entries in this file correspond to the GCP, and those should be looked at carefully as well. The reprojection errors for
GCP should be on the order of tens of pixels because the longitude and latitude of each GCP are not well-known.

It is also very important to examine the obtained match files in the output directory. If there are too few matches,
particularly among very similar images, one may need to increase the value of --epipolar-threshold (or of
--ip-inlier-factor for the not-recommended pinhole session). Note that a large value here may allow more
outliers.

Another thing one should keep an eye on is the height above datum of the camera centers as printed by bundle
adjustment towards the end. Any large difference in camera heights (say more than a few km) could be a symptom of
some failure.

10.18.4 Creating terrain models

The next step is to run stereo and create DEMs.

We will run the following command for each pair of images. Note that we reuse the filtered match points created by
bundle adjustment.

i=1
((j=i+1))
st=stereo_v${i}${j}
rm -rfv $st
mkdir -p $st
cp -fv ba/run-v${i}__v${j}-clean.match $st/run-v${i}__v${j}.match
parallel_stereo --skip-rough-homography -t nadirpinhole --stereo-algorithm 2 \

v${i}.tif v${j}.tif ba/run-run-v${i}.tsai ba/run-run-v${j}.tsai $st/run
point2dem --stereographic --proj-lon 253.90793 --proj-lat 39.47021 --tr 4 \

--errorimage $st/run-PC.tif

(Repeat this for other values of i.)

Here we chose to use a stereographic projection in point2dem centered on this region to create the DEM in units of
meter. One can can also use a different projection that can be passed to the option --t_srs, or if doing as above, the
center of the projection would need to change if working on a different region.

It is important to examine the mean intersection error for each DEM:

gdalinfo -stats stereo_v12/run-IntersectionErr.tif | grep Mean

which should hopefully be no more than 0.5 meters, otherwise likely bundle adjustment failed. One should also
compare the DEMs among themselves:

geodiff --absolute stereo_v12/run-DEM.tif stereo_v23/run-DEM.tif -o tmp
gdalinfo -stats tmp-diff.tif | grep Mean

(And so on for any other pair.) Here the mean error should be on the order of 2 meters, or hopefully less.
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10.18.5 Mosaicking and alignment

If more than one image pair was used, the obtained DEMs can be mosaicked:

dem_mosaic stereo_v12/run-DEM.tif stereo_v23/run-DEM.tif \
stereo_v34/run-DEM.tif -o mosaic.tif

This DEM can be hillshaded and overlayed on top of the reference DEM.

The next step is aligning it to the reference.

pc_align --max-displacement 1000 --save-transformed-source-points \
--alignment-method similarity-point-to-point \
ref_dem.tif mosaic.tif -o align/run

It is important to look at the errors printed by this tool before and after alignment, as well as details about the alignment
that was applied. The obtained aligned cloud can be made into a DEM again:

point2dem --stereographic --proj-lon 253.90793 --proj-lat 39.47021 --tr 4 \
align/run-trans_source.tif

The absolute difference before and after alignment can be found as follows:

geodiff --absolute mosaic.tif ref_dem.tif -o tmp
gdalinfo -stats tmp-diff.tif | grep Mean

geodiff --absolute align/run-trans_source-DEM.tif ref_dem.tif -o tmp
gdalinfo -stats tmp-diff.tif | grep Mean

In this case the mean error after alignment was about 6.5 m, which is not too bad given that the reference DEM
resolution is about 30 m/pixel.

10.18.6 Alignment of cameras

The transform computed with pc_align can be used to bring the cameras in alignment to the reference DEM. That
can be done as follows:

parallel_bundle_adjust -t nadirpinhole --datum wgs84 \
--force-reuse-match-files \
--inline-adjustments --num-passes 1 --num-iterations 0 \
--initial-transform align/run-transform.txt \
v[1-4].tif ba/run-run-v[1-4].tsai -o ba/run

creating the aligned cameras ba/run-run-run-v[1-4].tsai. If pc_align was called with the reference
DEM being the second cloud, one should use above the file:

align/run-inverse-transform.txt

as the initial transform.
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10.18.7 Mapprojection

If the steep topography prevents good DEMs from being created, one can map-project the images first onto the refer-
ence DEM:

for i in 1 2 3 4; do
mapproject ref_dem.tif v${i}.tif ba/run-run-run-v${i}.tsai v${i}_map.tif

done

and then run stereo with the mapprojected images, such as:

i=1
((j=i+1))
rm -rfv stereo_map_v${i}${j}
parallel_stereo v${i}_map.tif v${j}_map.tif \

ba/run-run-run-v${i}.tsai ba/run-run-run-v${j}.tsai \
stereo_map_v${i}${j}/run ref_dem.tif --session-type pinhole \
--cost-mode 4 --stereo-algorithm 2 --corr-seed-mode 1 \
--alignment-method none --corr-tile-size 9000

point2dem --stereographic --proj-lon 253.90793 \
--proj-lat 39.47021 --tr 4 --errorimage \
stereo_map_v${i}${j}/run-PC.tif

It is important to note that here we used the cameras that were aligned with the reference DEM. We could have as well
mapprojected onto a lower-resolution version of the mosaicked and aligned DEM with its holes filled.

10.18.8 When things fail

Processing SkySat images is difficult, for various reasons mentioned earlier. A few suggestions were also offered
along the way when things go wrong.

Problems are usually due to cameras being initialized inaccurately by cam_gen or bundle adjustment not optimizing
them well. The simplest solution is often to just try a different pair of images from the sequence, say from earlier
or later in the flight, or a pair with less overlap, or with more time elapsed between the two acquisitions. Modifying
various parameters may help as well.

We have experimented sufficiently with various SkySat datasets to be sure that the intrinsics (focal length, optical
center, and pixel pitch) are usually not the issue, rather the positions and orientations of the cameras.

10.18.9 Structure from motion

In case cam_gen does not create sufficiently good cameras, one can attempt to use the camera_solve tool (Section
9). This will create hopefully good cameras but in an arbitrary coordinate system. Then we will transfer those to the
world coordinates using GCP.

Here is an example for two cameras:

out=out_v12
ba_params="--num-passes 1 --num-iterations 0 --transform-cameras-using-gcp"
theia_overdides="--sift_num_levels=6 --lowes_ratio=0.9

--min_num_inliers_for_valid_match=10
--min_num_absolute_pose_inliers=10
--bundle_adjustment_robust_loss_function=CAUCHY
--post_rotation_filtering_degrees=180.0 --v=2
--max_sampson_error_for_verified_match=100.0
--max_reprojection_error_pixels=100.0
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--triangulation_reprojection_error_pixels=100.0
--min_num_inliers_for_valid_match=10
--min_num_absolute_pose_inliers=10"

rm -rfv $out
camera_solve $out --datum WGS84 --calib-file v1.tsai \

--bundle-adjust-params "$ba_params v1.gcp v2.gcp" v1.tif v2.tif

The obtained cameras should be bundle-adjusted as done for the outputs of cam_gen. Note that this tool is capricious
and its outputs can be often wrong. In the future it will be replaced by something more robust.

10.18.10 RPC models

Some SkySat datasets come with RPC camera models, typically embedded in the images. This can be verified by
running:

gdalinfo -stats output/video/frames/1225648254.44006968_sc00004_c1_PAN.tiff

We found that these models are not sufficiently robust for stereo. But they can be used to create initial guess cameras
with cam_gen instead of using longitude and latitude of corners. Here is an example:

img=output/video/frames/1225648254.44006968_sc00004_c1_PAN.tiff
cam_gen $img --reference-dem ref_dem.tif --focal-length 553846.153846 \

--optical-center 1280 540 --pixel-pitch 1 --height-above-datum 4000 \
--refine-camera --gcp-std 1 --input-camera $img \
-o v1_rpc.tsai --gcp-file v1_rpc.gcp

(Note that the Breckenridge dataset does not have RPC data, but other datasets do.)

Then one can proceed as earlier (particularly the GCP file can be edited to reflect the shorter image name).

One can also regenerate the provided SkySat RPC model as:

cam2rpc -t rpc --dem-file dem.tif input.tif output.xml

Here, the reference DEM should go beyond the extent of the image. This tool makes it possible to decide how finely
to sample the DEM, and one can simply use longitude-latitude and height ranges instead of the DEM.

We assumed in the last command that the input image implicitly stores the RPC camera model, as is the case for
SkySat.

Also, any pinhole camera models obtained using our software can be converted to RPC models as follows:

cam2rpc --dem-file dem.tif input.tif input.tsai output.xml

10.18.11 Bundle adjustment using reference terrain

At this stage, if desired, but this is rather unnecessary, one can do joint optimization of the cameras using dense and
uniformly distributed interest points, and using the reference DEM as a constraint. This should make the DEMs more
consistent among themselves and closer to the reference DEM.

It is also possible to float the intrinsics, per Section 8.2.1, which sometimes can improve the results further.

For that, one should repeat the stereo_tri part of of the stereo commands from Section 10.18.4 with the flags
--num-matches-from-disp-triplets 10000 and --unalign-disparity to obtain dense interest
points and unaligned disparity.

The match points can be examined as:
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stereo_gui v1.tif v2.tif stereo_v12/run-disp-v1__v2.match

and the same for the other image pairs. Hopefully they will fill as much of the images as possible. One should also
study the unaligned disparities, for example:

stereo_v12/run-v1__v2-unaligned-D.tif

by invoking disparitydebug on it and then visualizing the two obtained images. Hopefully these disparities are
dense and with few holes.

The dense interest points should be copied to the new bundle adjustment directory, such as:

mkdir -p ba_ref_terrain
cp stereo_v12/run-disp-v1__v2.match ba_ref_terrain/run-v1__v2.match

and the same for the other ones (note the convention for match files in the new directory). The unaligned disparities
can be used from where they are.

Then bundle adjustment using the reference terrain constraint proceeds as follows:

disp_list=$(ls stereo_v[1-4][1-4]/*-unaligned-D.tif)
bundle_adjust v[1-4].tif ba/run-run-run-v[1-4].tsai -o ba_ref_terrain/run \
--reference-terrain ref_dem.tif --disparity-list "$disp_list" \
--max-num-reference-points 10000000 --reference-terrain-weight 50 \
--parameter-tolerance 1e-12 -t nadirpinhole --max-iterations 500 \
--overlap-limit 1 --inline-adjustments --robust-threshold 2 \
--force-reuse-match-files --max-disp-error 100 --camera-weight 0

If invoking this creates new match files, it means that the dense match files were not copied successfully to the new
location. If this optimization is slow, perhaps too many reference terrain points were picked.

This will create, as before, the residual file named:

ba_ref_terrain/run-final_residuals_no_loss_function_pointmap_point_log.csv

showing how consistent are the cameras among themselves, and in addition, a file named:

ba_ref_terrain/run-final_residuals_no_loss_function_reference_terrain.txt

which tells how well the cameras are aligned to the reference terrain. The errors in the first file should be under 1
pixel, and in the second one should be mostly under 2-3 pixels (both are the fourth column in these files).

The value of --reference-terrain-weight can be increased to make the alignment to the reference terrain a
little tighter.

It is hoped that after running stereo with these refined cameras, the obtained DEMs will differ by less than 2 m among
themselves, and by less than 4 m as compared to the reference DEM.
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10.18.12 Floating the camera intrinsics

If desired to float the focal length as part of the optimization, one should pass in addition, the options:

--solve-intrinsics --intrinsics-to-float 'focal_length'

Floating the optical center can be done by adding it in as well.

It is important to note that for SkySat the intrinsics seem to be already quite good, and floating them is not necessary
and is only shown for completeness. If one wants to float them, one should vary the focal length while keeping the
optical center fixed, and vice versa, and compare the results. Then, with the result that shows most promise, one
should vary the other parameter. If optimizing the intrinsics too aggressively, it is not clear if they will still deliver
better results with other images or if comparing with a different reference terrain.

Yet, if desired, one can float even the distortion parameters. For that, the input camera files need to be converted to
some camera model having these (see Section 17.1), and their values can be set to something very small. One can use
the Brown-Conrady model, for example, so each camera file must have instead of NULL at the end the fields:

BrownConrady
xp = -1e-12
yp = -1e-12
k1 = -1e-10
k2 = -1e-14
k3 = -1e-22
p1 = -1e-12
p2 = -1e-12
phi = -1e-12

There is always a chance when solving these parameters that the obtained solution is not optimal. Hence, one can also
try using as initial guesses different values, for example, by negating the above numbers.

One can also try to experiment with the option --heights-from-dem, and also with --robust-threshold
if it appears that the large errors are not minimized enough.

10.19 Declassified satellite images: KH-4B

ASP supports the declassified high-resolution CORONA KH-4B images. These images can be processed using either
optical bar (panoramic) camera models or as pinhole camera models with RPC distortion. Most of the steps are
similar to the example in Fig. 10.12. The optical bar camera model is based on [SCS03] and [SKY04], whose format
is described in Section 17.3.

10.19.1 Fetching the data

KH-4B images are available via the USGS Earth Explorer, at

https://earthexplorer.usgs.gov/

(an account is required to download the data). We will work with the KH-4B image pair:

DS1105-2248DF076
DS1105-2248DA082

To get these from Earth Explorer, click on the Data Sets tab and select the three types of declassified data available,
then in the Additional Criteria tab choose Declass 1, and in the Entity ID field in that tab paste the
above frames (if no results are returned, one can attempt switching above to Declass 2, etc). Clicking on the
Results tab presents the user with information about these frames.
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Clicking on Show Metadata and Browse for every image will pop-up a table with meta-information. That one
can be pasted into a text file, named for example, DS1105-2248DF076.txt for the first image, from which later
the longitude and latitude of each image corner will be parsed. Then one can click on Download Options to
download the data.

10.19.2 Stitching the images

Each downloaded image will be made up of 2-4 portions, presumably due to the limitations of the scanning equipment.
They can be stitched together using ASP’s image_mosaic tool (Section 13.27).

For some reason, the KH-4B images are scanned in an unusual order. To mosaic them, the last image must be placed
first, the next to last should be second, etc. In addition, as seen from the tables of metadata discussed earlier, some
images correspond to the Aft camera type. Those should be rotated 180 degrees after mosaicking, hence below we
use the --rotate flag for that one. The overlap width is manually determined by looking at two of the sub images
in stereo_gui.

With this in mind, image mosaicking for these two images will happen as follows:

image_mosaic DS1105-2248DF076_d.tif DS1105-2248DF076_c.tif \
DS1105-2248DF076_b.tif DS1105-2248DF076_a.tif -o DS1105-2248DF076.tif \
--ot byte --overlap-width 7000 --blend-radius 2000

image_mosaic DS1105-2248DA082_d.tif DS1105-2248DA082_c.tif \
DS1105-2248DA082_b.tif DS1105-2248DA082_a.tif -o DS1105-2248DA082.tif \
--ot byte --overlap-width 7000 --blend-radius 2000 --rotate

In order to process with the optical bar camera model these images need to be cropped to remove the most of empty
area around the image. The four corners of the valid image area can be manually found by clicking on the corners
in stereo_gui. Note that for some input images it can be unclear where the proper location for the corner is due
to edge artifacts in the film. Do your best to select the image corners such that obvious artifacts are kept out and
all reasonable image sections are kept in. ASP provides a simple Python tool called historical_helper.py to
rotate the image so that the top edge is horizontal while also cropping the boundaries. Pass in the corner coordinates
as shown below in the order top-left, top-right, bot-right, bot-left (column then row). This is also a good opportunity
to simplify the file names going forwards.

historical_helper.py rotate-crop --input-path DS1105-2248DA082.tif --output-path aft.
↪→tif \
--interest-points '4523 1506 114956 1450 114956 9355 4453 9408'

historical_helper.py rotate-crop --input-path DS1105-2248DF076.tif --output-path for.
↪→tif \
--interest-points '6335 1093 115555 1315 115536 9205 6265 8992'

10.19.3 Fetching a ground truth DEM

To create initial cameras to use with these images, and to later refine and validate the terrain model made from them,
we will need a ground truth source. Several good sets of DEMs exist, including SRTM, ASTER, and TanDEM-X.
Here we will work with SRTM, which provides DEMs with a 30-meter post spacing. The bounds of the region of
interest are inferred from the tables with meta-information from above. We will use wget to fetch https://e4ftl01.cr.
usgs.gov/provisional/MEaSUREs/NASADEM/Eurasia/hgt_merge/n31e099.hgt.zip

and also tiles n31e100 and n31e101. After unzipping, these can be merged and cropped as follows:

dem_mosaic n*.hgt --t_projwin 99.6 31.5 102 31 -o dem.tif

Determining these bounds and the visualization of all images and DEMs can be done in stereo_gui.

The SRTM DEM may need adjustment, as discussed in Section 10.18.2.
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10.19.4 Creating camera files

ASP provides the tool named cam_gen that, based on a camera’s intrinsics and the positions of the image corners on
Earth’s surface will create initial camera models that will be the starting point for aligning the cameras.

To create optical bar camera models, an example camera model file is needed. This needs to contain all of the expected
values for the camera, though image_size, image_center, iC, and IR can be any value since they will be recalculated.
The pitch is determined by the resolution of the scanner used, which is seven microns. The other values are determined
by looking at available information about the satellite. For the first image (DS1105-2248DF076) the following values
were used:

VERSION_4
OPTICAL_BAR
image_size = 13656 1033
image_center = 6828 517
pitch = 7.0e-06
f = 0.61000001430511475
scan_time = 0.5
forward_tilt = 0.2618
iC = -1030862.1946224371 5468503.8842079658 3407902.5154047827
iR = -0.95700845635275322 -0.27527006183758934 0.091439638698163225 \

-0.26345593052063937 0.69302501329766897 -0.67104940475144637 \
0.1213498543172795 -0.66629027007731101 -0.73575232847574434

speed = 7700
mean_earth_radius = 6371000
mean_surface_elevation = 4000
motion_compensation_factor = 1.0
scan_dir = right

For a description of each value, see Section 17.3. For the other image (aft camera) the forward tilt was set to -0.2618
and scan_dir was set to ’left’. The correct values for scan_dir (left or right) and use_motion_compensation (1.0 or -
1.0) are not known for certain due to uncertainties about how the images were recorded and may even change between
launches of the KH-4 satellite. You will need to experiment to see which combination of settings produces the best
results for your particular data set.

The metadata table from Earth Explorer has the following entries for DS1105-2248DF076:

NW Corner Lat dec 31.266
NW Corner Long dec 99.55
NE Corner Lat dec 31.55
NE Corner Long dec 101.866
SE Corner Lat dec 31.416
SE Corner Long dec 101.916
SW Corner Lat dec 31.133
SW Corner Long dec 99.55

These correspond to the upper-left, upper-right, lower-right, and lower-left pixels in the image. We will invoke
cam_gen as follows:

cam_gen --sample-file sample_kh4b_for_optical_bar.tsai --camera-type opticalbar \
--lon-lat-values '99.55 31.266 101.866 31.55 101.916 31.416 99.55 31.133' \
for.tif --reference-dem dem.tif --refine-camera -o for.tsai

cam_gen --sample-file sample_kh4b_aft_optical_bar.tsai --camera-type opticalbar
--lon-lat-values '99.566 31.266 101.95 31.55 101.933 31.416 99.616 31.15' \
aft.tif --reference-dem dem.tif --refine-camera -o aft.tsai

It is very important to note that if, for example, the upper-left image corner is in fact the NE corner from the metadata,
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then that corner should be the first in the longitude-latitude list when invoking this tool.

An important sanity check is to mapproject the images with these cameras, for example as:

mapproject dem.tif for.tif for.tsai for.map.tif

and then overlay the mapprojected image on top of the DEM in stereo_gui. If it appears that the image was not
projected correctly, likely the order of image corners was incorrect. At this stage it is not unusual that the mapprojected
images are shifted from where they should be, that will be corrected later.

10.19.5 Bundle adjustment and stereo

Before processing the input images it is a good idea to experiment with reduced resolution copies in order to accelerate
testing. You can easily generate reduced resolution copies of the images using stereo_gui as shown below. When
making a copy of the camera model files, make sure to update image_size, image_center (divide by N), and the pitch
(multiply by N) to account for the downsample amount.

stereo_gui for.tif aft.tif --create-image-pyramids-only
ln -s for_sub8.tif for_small.tif
ln -s aft_sub8.tif aft_small.tif
cp for.tsai for_small.tsai
cp aft.tsai aft_small.tsai

You can now run bundle adjustment on the downsampled images:

bundle_adjust for_small.tif aft_small.tif \
for_small.tsai aft_small.tsai \
-o ba_small/run --max-iterations 100 --camera-weight 0 \
--disable-tri-ip-filter --disable-pinhole-gcp-init \
--skip-rough-homography --inline-adjustments \
--ip-detect-method 1 -t opticalbar --datum WGS84

Followed by stereo and DEM creation:

parallel_stereo for_small.tif aft_small.tif \
ba_small/run-for_small.tsai ba_small/run-aft_small.tsai \
stereo_small_mgm/run --alignment-method affineepipolar \
-t opticalbar --skip-rough-homography --disable-tri-ip-filter \
--skip-low-res-disparity-comp --ip-detect-method 1 \
--stereo-algorithm 2

point2dem --stereographic --proj-lon 100.50792 --proj-lat 31.520417 \
--tr 30 stereo_small_mgm/run-PC.tif

This will create a very rough initial DEM. It is sufficient however to align and compare with the SRTM DEM:

pc_align --max-displacement -1 \
--initial-transform-from-hillshading similarity \
--save-transformed-source-points --num-iterations 0 \
--max-num-source-points 1000 --max-num-reference-points 1000 \
dem.tif stereo_small_mgm/run-DEM.tif -o stereo_small_mgm/run

point2dem --stereographic --proj-lon 100.50792 --proj-lat 31.520417 \
--tr 30 stereo_small_mgm/run-trans_source.tif

This will hopefully create a DEM aligned to the underlying SRTM. There is a chance that this may fail as the two
DEMs to align could be too different. In that case, one can re-run point2dem to re-create the DEM to align with a
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coarser resolution, say with --tr 120, then re-grid the SRTM DEM to the same resolution, which can be done as:

pc_align --max-displacement -1 dem.tif dem.tif -o dem/dem \
--num-iterations 0 --max-num-source-points 1000 \
--max-num-reference-points 1000 --save-transformed-source-points

point2dem --stereographic --proj-lon 100.50792 --proj-lat 31.520417 \
--tr 120 dem/dem-trans_source.tif

You can then try to align the newly obtained coarser SRTM DEM to the coarser DEM from stereo.

10.19.6 Floating the intrinsics

The obtained alignment transform can be used to align the cameras as well, and then one can experiment with floating
the intrinsics, as in Section 10.18.

10.19.7 Modeling the camera models as pinhole cameras with RPC distortion

Once sufficiently good optical bar cameras are produced and the DEMs from them are reasonably similar to some
reference terrain ground truth, such as SRTM, one may attempt to improve the accuracy further by modeling these
cameras as simple pinhole models with the nonlinear effects represented as a distortion model given by Rational
Polynomial Coefficients (RPC) of any desired degree (see Section 17.1). The best fit RPC representation can be found
for both optical bar models, and the RPC can be further optimized using the reference DEM as a constraint.

To convert from optical bar models to pinhole models with RPC distortion one does:

convert_pinhole_model for_small.tif for_small.tsai -o for_small_rpc.tsai \
--output-type RPC --sample-spacing 50 --rpc-degree 2

and the same for the other camera. The obtained cameras should be bundle-adjusted as before. One can create a DEM
and compare it with the one obtained with the earlier cameras. Likely some shift in the position of the DEM will be
present, but hopefully not too large. The pc_align tool can be used to make this DEM aligned to the reference
DEM.

Next, one follows the same process as outlined in Section 10.18 and Section 8.2.1 to refine the RPC coefficients. We
will float the RPC coefficients of the left and right images independently, as they are unrelated. Hence the command
we will use is:

bundle_adjust for_small.tif aft_small.tif \
for_small_rpc.tsai aft_small_rpc.tsai \
-o ba_rpc/run --max-iterations 200 --camera-weight 0 \
--disable-tri-ip-filter --disable-pinhole-gcp-init \
--skip-rough-homography --inline-adjustments \
--ip-detect-method 1 -t nadirpinhole --datum WGS84 \
--force-reuse-match-files --reference-terrain-weight 1000 \
--parameter-tolerance 1e-12 --max-disp-error 100 \
--disparity-list stereo/run-unaligned-D.tif \
--max-num-reference-points 40000 --reference-terrain srtm.tif \
--solve-intrinsics --intrinsics-to-share 'focal_length optical_center' \
--intrinsics-to-float other_intrinsics --robust-threshold 10 \
--initial-transform pc_align/run-transform.txt

Here it is suggested to use a match file with dense interest points. The initial transform is the transform written by
pc_align applied to the reference terrain and the DEM obtained with the camera models for_small_rpc.tsai
and aft_small_rpc.tsai (with the reference terrain being the first of the two clouds passed to the alignment
program). The unaligned disparity in the disparity list should be from the stereo run with these initial guess camera
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models (hence stereo should be used with the --unalign-disparity option). It is suggested that the optical
center and focal lengths of the two cameras be kept fixed, as RPC distortion should be able model any changes in
those quantities as well.

One can also experiment with the option --heights-from-dem instead of --reference-terrain. The
former seems to be able to handle better large height differences between the DEM with the initial cameras and the
reference terrain, while the former is better at refining the solution.

Then one can create a new DEM from the optimized camera models and see if it is an improvement.

10.20 Declassified satellite images: KH-7

KH-7 was an effective observation satellite that followed the Corona program. It contained an index (frame) camera
and a single strip (pushbroom) camera. ASP does currently have a dedicated camera model for this camera, so we will
have to try to approximate it with a pinhole model. Without a dedicated solution for this camera, you may only be able
to get good results near the central region of the image.

For this example we find the following images in Earth Explorer declassified collection 2:

DZB00401800038H025001
DZB00401800038H026001

Make note of the lat/lon corners of the images listed in Earth Explorer, and note which image corners correspond to
which compass locations.

After downloading and unpacking the images, we merge them with the image_mosaic tool. These images have a
large amount of overlap and we need to manually lower the blend radius so that we do not have memory problems
when merging the images. Note that the image order is different for each image.

image_mosaic DZB00401800038H025001_b.tif DZB00401800038H025001_a.tif \
-o DZB00401800038H025001.tif --ot byte --blend-radius 2000 --overlap-width 10000 \

image_mosaic DZB00401800038H026001_a.tif DZB00401800038H026001_b.tif \
-o DZB00401800038H026001.tif --ot byte --blend-radius 2000 --overlap-width 10000 \

For this image pair we will use the following SRTM images from Earth Explorer:

n22_e113_1arc_v3.tif
n23_e113_1arc_v3.tif
dem_mosaic n22_e113_1arc_v3.tif n23_e113_1arc_v3.tif -o srtm_dem.tif

(The SRTM DEM may need adjustment, as discussed in Section 10.18.2.)

Next we crop the input images so they only contain valid image area.

historical_helper.py rotate-crop --input-path DZB00401800038H025001.tif \
--output-path 5001.tif --interest-points '1847 2656 61348 2599 61338 33523 1880
↪→33567'
historical_helper.py rotate-crop --input-path DZB00401800038H026001.tif \
--output-path 6001.tif --interest-points '566 2678 62421 2683 62290 33596 465
↪→33595'

We will try to approximate the KH7 camera using a pinhole model. The pitch of the image is determined by the
scanner, which is 7.0e-06 meters per pixel. The focal length of the camera is reported to be 1.96 meters, and we will
set the optical center at the center of the image. We need to convert the optical center to units of meters, which means
multiplying the pixel coordinates by the pitch to get units of meters.

Using the image corner coordinates which we recorded earlier, use the cam_gen tool to generate camera models for
each image, being careful of the order of coordinates.
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cam_gen --pixel-pitch 7.0e-06 --focal-length 1.96 \
--optical-center 0.2082535 0.1082305 \
--lon-lat-values '113.25 22.882 113.315 23.315 113.6 23.282 113.532 22.85' \
5001.tif --reference-dem srtm_dem.tif --refine-camera -o 5001.tsai

cam_gen --pixel-pitch 7.0e-06 --focal-length 1.96 \
--optical-center 0.216853 0.108227 \
--lon-lat-values '113.2 22.95 113.265 23.382 113.565 23.35 113.482 22.915' \
6001.tif --reference-dem srtm_dem.tif --refine-camera -o 6001.tsai

A quick way to evaluate the camera models is to use the camera_footprint tool to create KML footprint files,
then look at them in Google Earth. For a more detailed view, you can map project them and overlay them on the
reference DEM in stereo_gui.

camera_footprint 5001.tif 5001.tsai --datum WGS_1984 --quick \
--output-kml 5001_footprint.kml -t nadirpinhole --dem-file srtm_dem.tif

camera_footprint 6001.tif 6001.tsai --datum WGS_1984 --quick \
--output-kml 6001_footprint.kml -t nadirpinhole --dem-file srtm_dem.tif

The output files from cam_gen will be roughly accurate but they may still be bad enough that bundle_adjust
has trouble finding a solution. One way to improve your initial models is to use ground control points. For this test
case I was able to match features along the rivers to the same rivers in a hillshaded version of the reference DEM. I
used three sets of GCPs, one for each image individually and a joint set for both images. I then ran bundle_adjust
individually for each camera using the GCPs.

bundle_adjust 5001.tif 5001.tsai gcp_5001.gcp -t nadirpinhole --inline-adjustments \
--num-passes 1 --camera-weight 0 --ip-detect-method 1 -o bundle_5001/out \
--max-iterations 30 --fix-gcp-xyz

bundle_adjust 6001.tif 6001.tsai gcp_6001.gcp -t nadirpinhole --inline-adjustments \
--num-passes 1 --camera-weight 0 --ip-detect-method 1 -o bundle_6001/out \
--max-iterations 30 --fix-gcp-xyz

At this point it is a good idea to experiment with downsampled copies of the input images before running processing
with the full size images. You can generate these using stereo_gui. Also make copies of the camera model files
and scale the image center and pitch to match the downsample amount.

stereo_gui 5001.tif 6001.tif --create-image-pyramids-only
ln -s 5001_sub16.tif 5001_small.tif
ln -s 6001_sub16.tif 6001_small.tif
cp 5001.tsai 5001_small.tsai
cp 6001.tsai 6001_small.tsai

Now we can run bundle_adjust and stereo. If you are using the GCPs from earlier, the pixel values will need
to be scaled to match the downsampling applied to the input images.

bundle_adjust 5001_small.tif 6001_small.tif bundle_5001/out-5001_small.tsai \
bundle_6001/out-6001_small.tsai gcp_small.gcp -t nadirpinhole \
-o bundle_small_new/out --force-reuse-match-files --max-iterations 30 \
--camera-weight 0 --disable-tri-ip-filter --disable-pinhole-gcp-init \
--skip-rough-homography --inline-adjustments --ip-detect-method 1 \
--datum WGS84 --num-passes 2

parallel_stereo --alignment-method homography --skip-rough-homography \
--disable-tri-ip-filter --ip-detect-method 1 --session-type nadirpinhole \
5001_small.tif 6001_small.tif bundle_small_new/out-out-5001_small.tsai \
bundle_small_new/out-out-6001_small.tsai st_small_new/out
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gdal_translate -b 4 st_small_new/out-PC.tif st_small_new/error.tif

Looking at the error result, it is clear that the simple pinhole model is not doing a good job modeling the KH7 camera.
We can try to improve things by adding a distortion model to replace the NULL model in the .tsai files we are using.

BrownConrady
xp = -1e-12
yp = -1e-12
k1 = -1e-10
k2 = -1e-14
k3 = -1e-22
p1 = -1e-12
p2 = -1e-12
phi = -1e-12

Once the distortion model is added, you can use bundle_adjust to optimize them. See the section on solving for
pinhole intrinsics in the KH4B example for details. We hope to provide a more rigorous method of modeling the KH7
camera in the future.

10.21 Declassified satellite images: KH-9

The KH-9 satellite contained one frame camera and two panoramic cameras, one pitched forwards and one aft. The
frame camera is a normal pinhole model so this example describes how to set up the panoramic cameras for processing.
Processing this data is similar to processing KH-4B data except that the images are much larger.

For this example we use the following images from the Earth Explorer declassified collection 3:

D3C1216-200548A041
D3C1216-200548F040

Make note of the lat/lon corners of the images listed in Earth Explorer, and note which image corners correspond to
which compass locations.

After downloading and unpacking the images, we merge them with the image_mosaic tool.

image_mosaic D3C1216-200548F040_a.tif D3C1216-200548F040_b.tif D3C1216-200548F040_c.
↪→tif \
D3C1216-200548F040_d.tif D3C1216-200548F040_e.tif D3C1216-200548F040_f.tif

↪→ \
D3C1216-200548F040_g.tif D3C1216-200548F040_h.tif D3C1216-200548F040_i.tif

↪→ \
D3C1216-200548F040_j.tif D3C1216-200548F040_k.tif D3C1216-200548F040_l.tif

↪→ \
--ot byte --overlap-width 3000 -o D3C1216-200548F040.tif

image_mosaic D3C1216-200548A041_a.tif D3C1216-200548A041_b.tif D3C1216-200548A041_c.
↪→tif \
D3C1216-200548A041_d.tif D3C1216-200548A041_e.tif D3C1216-200548A041_f.tif

↪→ \
D3C1216-200548A041_g.tif D3C1216-200548A041_h.tif D3C1216-200548A041_i.tif

↪→ \
D3C1216-200548A041_j.tif D3C1216-200548A041_k.tif --overlap-width 1000

↪→ \
--ot byte -o D3C1216-200548A041.tif --rotate

These images also need to be cropped to remove most of the area around the images:
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historical_helper.py rotate-crop --input-path D3C1216-200548F040.tif --output-path
↪→for.tif \
--interest-points '2414 1190 346001 1714 345952 23960 2356 23174'

historical_helper.py rotate-crop --input-path D3C1216-200548A041.tif --output-path
↪→aft.tif \
--interest-points '1624 1333 346183 1812 346212 24085 1538 23504'

For this example there are ASTER DEMs which can be used for reference. They can be downloaded from https:
//gdex.cr.usgs.gov/gdex/ as single GeoTIFF files. To cover the entire area of this image pair you may need to download
two files separately and merge them using dem_mosaic.

As with KH-4B, this satellite contains a forward pointing and aft pointing camera that need to have different values
for “forward_tilt” in the sample camera files. The suggested values are -0.174533 for the aft camera and 0.174533 for
the forward camera. Note that some KH9 images have a much smaller field of view (horizontal size) than others!

VERSION_4
OPTICAL_BAR
image_size = 62546 36633
image_center = 31273 18315.5
pitch = 7.0e-06
f = 1.5
scan_time = 0.7
forward_tilt = 0.174533
iC = -1053926.8825477704 5528294.6575468015 3343882.1925249361
iR = -0.96592328992496967 -0.16255393156297787 0.20141603042941184 \

-0.23867502833024612 0.25834753840712932 -0.93610404349651921 \
0.10013205696518604 -0.95227767417513032 -0.28834146846321851

speed = 8000
mean_earth_radius = 6371000
mean_surface_elevation = 0
motion_compensation_factor = 1
scan_dir = right

Camera files are generated using cam_gen from a sample camera file as in the previous examples.

cam_gen --sample-file sample_kh9_for_optical_bar.tsai --camera-type opticalbar
↪→ \
--lon-lat-values '-151.954 61.999 -145.237 61.186 -145.298 60.944 -152.149 61.771

↪→' \
for.tif --reference-dem aster_dem.tif --refine-camera -o for.tsai

cam_gen --sample-file sample_kh9_aft_optical_bar.tsai --camera-type opticalbar
↪→ \
--lon-lat-values '-152.124 61.913 -145.211 61.156 -145.43 60.938 -152.117 61.667

↪→' \
aft.tif --reference-dem aster_dem.tif --refine-camera -o aft.tsai

As with KH-4B, it is best to first experiment with low resolution copies of the images. Don’t forget to scale the image
size, center location, and pixel size in the new camera files!

stereo_gui for.tif aft.tif --create-image-pyramids-only
ln -s for_sub32.tif for_small.tif
ln -s aft_sub32.tif aft_small.tif
cp for.tsai for_small.tsai
cp aft.tsai aft_small.tsai

From this point KH-9 data can be processed in a very similar manner to the KH-4B example. Once again, you may
need to vary some of the camera parameters to find the settings that produce the best results. For this example we will
demonstrate how to use bundle_adjust to solve for intrinsic parameters in optical bar models.
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Using the DEM and the input images it is possible to collect rough ground control points which can be used to roughly
align the initial camera models.

bundle_adjust for_small.tif for_small.tsai ground_control_points.gcp -t opticalbar \
--inline-adjustments --num-passes 1 --camera-weight 0 --ip-detect-method 1 \
-o bundle_for_small/out --max-iterations 30 --fix-gcp-xyz

bundle_adjust aft_small.tif aft_small.tsai ground_control_points.gcp -t opticalbar \
--inline-adjustments --num-passes 1 --camera-weight 0 --ip-detect-method 1 \
-o bundle_aft_small/out --max-iterations 30 --fix-gcp-xyz

Now we can do a joint bundle adjustment. While in this example we immediately attempt to solve for intrinsics,
you can get better results using techniques such as the --disparity-list option described in Section 10.19 and
Section 10.18 along with the reference DEM. We will try to solve for all intrinsics but will share the focal length and
optical center since we expect them to be very similar. If we get good values for the other intrinsics we could do
another pass where we don’t share those values in order to find small difference between the two cameras. We specify
intrinsic scaling limits here. The first three pairs are for the focal length and the two optical center values. For an
optical bar camera, the next three values are for speed, motion_compensation_factor, and scan_time.
We are fairly confident in the focal length and the optical center but we only have guesses for the other values so we
allow them to vary in a wider range.

bundle_adjust left_small.tif right_small.tif bundle_for_small/out-for_small.tsai \
bundle_aft_small/out-aft_small.tsai -t opticalbar -o bundle_small/out \
--force-reuse-match-files --max-iterations 30 --camera-weight 0 \
--disable-tri-ip-filter --skip-rough-homography --inline-adjustments \
--ip-detect-method 1 --datum WGS84 --num-passes 2 --solve-intrinsics \
--intrinsics-to-float "focal_length optical_center other_intrinsics" \
--intrinsics-to-share "focal_length optical_center" --ip-per-tile 1000 \
--intrinsics-limits "0.95 1.05 0.90 1.10 0.90 1.10 0.5 1.5 -5.0 5.0 \
0.3 2.0" --num-random-passes 2

These limits restrict our parameters to reasonable bounds but unfortunately they greatly increase the run time
of bundle_adjust. Hopefully you can figure out the correct values for scan_dir doing long optimiza-
tion runs using the limits. The --intrinsic-limits option is useful when used in conjunction with the
--num-random-passes option because it also sets the numeric range in which the random initial param-
eter values are chosen from. Note that --num-passes is intended to filter out bad interest points while
--num-random-passes tries out multiple random starting seeds to see which one leads to the result with the
lowest error.

10.22 Shallow-water bathymetry

ASP supports creation of terrain models where parts of the terrain are under water. Assuming that the water is shallow,
still, clear, with sufficient texture to match at the water bottom between the left and right images, the rays emanating
from the cameras and converging at those features will be bent according to Snell’s law at the water interface, hence
determining correctly the position of underwater terrain.

ASP supports this mode only with the dg, rpc, and nadirpinhole sessions, so with Digital Globe linescan
cameras, RPC cameras, and pinhole cameras, all for Earth. Both raw and mapprojected images can be used, with or
without bundle adjustment.
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10.22.1 Physics considerations

Shallow water does not appear equally transparent at all wavelengths, which will affect the quality of the results. While
the process we outline below will work, in principle, with any data, we will focus on stereo with the G band (green,
stored at band 3) of Digital Globe multispectral imagery, and we will use the N band (near-infrared 1, stored at band
7), to determine a mask of the ground vs water.

These or any other bands can be extracted from a multi-band image as follows:

b=3
gdal_translate -b ${b} -co compress=lzw -co TILED=yes \

-co BLOCKXSIZE=256 -co BLOCKYSIZE=256 \
input.TIF input_b${b}.tif

The extra options, in addition to -b ${b} to extract a given band, are needed to create a compressed and tiled output
image, which helps with the performance of ASP later.

10.22.2 Determination of the water surface

The first requirement towards solving this problem is to find the water surface. Here we assume that the Earth curvature
is not important, and that the water surface will be a plane, whose equation we will compute in the ECEF coordinate
system. (This assumption is to be revisited shortly.)

The water plane need not be perfectly horizontal from a ground perspective, due to slight orientation errors in the input
camera models. The plane will be found by first creating a DEM and orthoimage from the input data, for example as
follows:

stereo -t dg left.tif right.tif left.xml right.xml run/run
point2dem --orthoimage run/run-PC.tif run/run-L.tif

Here, the two input images can be, for example, a single band extracted from Digital Globe multispectral images, such
as band 7. (Note that all these bands have the same XML camera model.)

Then, vertices on the water-ground boundary can be picked in the ortho image run/run-DRG.tif and saved as
an Esri shapefile, for example, named shoreline.shp. This can be accomplished in any GIS tool, for
example, in QGIS. The ASP stereo_gui program can be used as well, as described in Section 13.47.2.

It is very important to pick many such vertices, say about 15-25 of them (the more the better), over the full extent of
the area of interest, or else the plane may not be accurate. It is not important for the obtained polygonal shape to be
“pretty”, or if the edges cross land or go in deep water, as only the locations of the vertices will be considered.

Then, the bathy_plane_calc ASP program will be invoked, which will fit a plane through the points obtained by
sampling the DEM at the vertices of the shapefile, while using outlier removal, as follows:

bathy_plane_calc --shapefile shoreline.shp --dem run/run-DEM.tif \
--outlier-threshold 0.2 --bathy-plane bathy_plane.txt \
--output-inlier-shapefile shoreline_inliers.shp

This will produce the following output:

Found 17 / 32 inliers.
Max distance to the plane (meters): 2.60551
Max inlier distance to the plane (meters): 0.0986373
Writing: bathy_plane.txt

and will save to disk the file bathy_plane.txt which has four values, giving the equation of the plane ax + by
+ cz + d = 0. Note the messages about how many of the points picked by the user were kept as inliers and the
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Fig. 10.13: Example of a shapefile whose vertices are at the water-land boundary.

10.22. Shallow-water bathymetry 127



Ames Stereo Pipeline Documentation, Release 3.0.0

distance from those points to the plane, which ideally should be zero. (The value d in that file should be about the
Earth radius, as we use ECEF coordinates.)

It is important to keep an eye on the number of inliers. If too few, that may mean that the outlier threshold is too strict.
Above, the inliers are saved as a shape file and can be inspected. Ideally the inliers bound the desired region well, or
else the number of sample points can be increased or the outlier threshold can be relaxed by making it bigger.

Above we assume that the DEM and DRG files are created together with point2dem and are one-to-one, or else the
results will be inaccurate.

The manual page for this tool showing the full list of options is in Section 13.3.

10.22.3 Computation of the water-land threshold

In order to distinguish points on land from those under water, a mask needs to be computed for each of the left and
right input images, with the masks having the same dimensions as those images.

A simple way of creating such a mask is to first determine a threshold such that pixels at or below threshold are under
water, and those above threshold are on land.

It was experimentally found that it is best to use band 7 for Digital Globe multispectral images to find this water
threshold, as in them the water appears universally darker than the land.

A manual approach for finding this threshold in an image is pick some sample pixels in stereo_gui over the water
region, with the pixel of the largest value declared as the threshold. How to do this is described in Section 13.47.2.

ASP provides a tool for finding the threshold in automated way based on histogram analysis. Its reference page, which
explains how to install its dependencies and its command-line options, can be found in Section 13.4.

This program works based on the observation that in such an image the water appears darker than the land, hence, in
a histogram of the pixels in the image, the water and land appear as two noticeable peaks, with a good value for the
threshold then being the image value at the bottom of the valley between those peaks.

For robustness to noise, this histogram is approximated by a kernel-density estimate (KDE) using Gaussian kernels. It
is very important to note that even then this tool may return the wrong minimum, which it assumes to be the first one.

Therefore, this tool plots the histogram, its kernel density estimate, the positions of the minima, and prints their
locations on screen. The user is responsible for validating visually where the most appropriate position of the minimum
is (along the horizontal axis).

The kernel-density estimate calculation is very time-consuming for large images, hence it is suggested to pass to the
tool the number of samples to use (it will pick the samples uniformly in the image). For example, if a million samples
are used, the calculation should take a few minutes to complete.

This program can be invoked for each of the left and right images as follows:

~/miniconda3/envs/bathy/bin/python $(which bathy_threshold_calc.py) \
--image left.tif --num-samples 1000000

Here it is assumed that ASP’s bin directory is in the path.

It is suggested to experiment a bit with the number of samples, using, for example, double of this amount, and see the
difference. Normally the outcome should be rather similar.

It will produce the following output:

Image file is left.tif
Number of samples is 1000000
Number of image rows and columns: 7276, 8820
Picking a uniform sample of dimensions 908, 1101
Please be patient. It make take several minutes to find the answer.
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Positions of the minima: [ 155.18918919 802.7027027 ... ]
Suggested threshold is the position of the first minimum: 155.1891891891892
Please verify with the graph. There is a chance the second minimum may work better.
Elapsed time in seconds: 275.2

Fig. 10.14: Example of the graph plotted by bathy_threshold_calc.py

Once the threshold is found, either manually or automatically, the stereo_gui tool can be used to visualize the
regions at or below threshold, see again Section 13.47.2.

10.22.4 Creation of masks based on the threshold

Having determined the water-land threshold, the left and right image masks will be found from the corresponding
images as follows:

left_thresh=155.1891891891892
image_calc -c "max($left_thresh, var_0)" \

--output-nodata-value $left_thresh \
left_b7.tif -o left_mask.tif

Here, left_b7.tif is suggestive of the fact that the band 7 of WorldView multispectral imagery was used.

It is important to remember to use the right image threshold when repeating this process for the right image.
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This tool sets the pixel values at or below threshold to the no-data value, while keeping unchanged the values above
the threshold.

Later, when doing stereo, if, based on the masks, a pixel in the left image is under water, while the corresponding
pixel in the right image is not, for noise or other reasons, that pixel pair will be declared to be on land and hence no
bathymetry correction will take place for this pair. Hence, some inspection and potentially cleanup of the masks may
be necessary.

10.22.5 Stereo with bathymetry correction

Having these in place, stereo can then happen as follows:

stereo -t dg left.tif right.tif left.xml right.xml \
--left-bathy-mask left_mask.tif --right-bathy-mask right_mask.tif \
--refraction-index 1.34 --bathy-plane bathy_plane.txt \
run_bathy/run

point2dem run_bathy/run-PC.tif --orthoimage run_bathy/run-L.tif

Note that we specified the two masks, the water index of refraction, and the water plane found before.

The water refraction index was set 1.34 [Jer76]. Alternatively, one could use 1.333 [ThormahlenSG85][HS98], or a
more precise value that depends on wavelength, temperature, and if having saltwater or freshwater (Parrish (2020),
[AH76][Mob95]). For example, using the equation and coefficients found in Parrish (2020), and the green wavelength
for saltwater, the water refraction index is 1.340125 when the water temperature is 27 ° C (this was applied to a Florida
Keys test site for the month of May).

The obtained point cloud will have both triangulated points above water, so with no correction, and below water,
with the correction applied. If desired to have only one of the two, call the stereo command with the option
--output-cloud-type with the value topo or bathy respectively (the default for this option is all).

The bathymetry correction happens at the triangulation stage (though the necessary transformations on the bathymetry
masks are done in pre-processing). Hence, after a stereo run finished, it is only necessary to re-run the stereo_tri
step if desired to apply this correction or not, or if to change the value of --output-cloud-type.

As in usual invocations of stereo, the input images may be map-projected, and then a DEM is expected, stereo may
happen only in certain regions as chosen in the GUI, bundle adjustment may be used, the output point cloud may be
converted to LAS, etc.

10.22.6 Bathymetry correction with mapprojected images

Given an external DEM, the left and right images can be mapprojected onto this DEM, for example as:

mapproject external_dem.tif left.tif left.xml left_map.tif

and the same for the right image. One should mapproject the same way the left and right band 7 Digital Globe
multispectral images (if applicable), obtaining two images, left_map_b7.tif and right_map_b7.tif. These
two can be used to find the masks, as earlier:

left_thresh=155.1891891891892
image_calc -c "max($left_thresh, var_0)" \

--output-nodata-value $left_thresh \
left_map_b7.tif -o left_map_mask.tif

(and the same for the right image.)
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The threshold determined with the original non-mapprojected images should still work, and the same water plane can
be used.

Then, stereo happens as above, with the only differences being the addition of the external DEM and the new names
for the images and the masks:

stereo -t dg left_map.tif right_map.tif left.xml right.xml \
--left-bathy-mask left_map_mask.tif \
--right-bathy-mask right_map_mask.tif \
--refraction-index 1.34 \
--bathy-plane bathy_plane.txt \
run_map/run external_dem.tif

10.22.7 Using Digital Globe PAN images

The bathymetry mode can be used with Digital Globe PAN images as well, though likely the water bottom may not be
as transparent in this case as for the green band.

Yet, if desired to do so, a modification is necessary if the mask for pixels above water is obtained not from the PAN
image itself, but from a band of the corresponding multispectral image, because those are acquired with a different
sensor.

Starting with a multispectral image mask, one has to first increase its resolution by a factor of 4 to make it comparable
to the PAN image, which can be done as follows:

gdal_translate -co compress=lzw -co TILED=yes -co INTERLEAVE=BAND \
-co BLOCKXSIZE=256 -co BLOCKYSIZE=256 -outsize 400% 400% \
mask.tif mask_4x.tif

To inspect the dimensions of the magnified mask and of the PAN image, do:

gdalinfo image.tif | grep Size

Then, one has to crop 50 columns from the left and right sides, which can be accomplished, for example, as:

gdal_translate -co compress=lzw -co TILED=yes -co INTERLEAVE=BAND \
-co BLOCKXSIZE=256 -co BLOCKYSIZE=256 \
-srcwin 50 0 35180 29072 mask_4x.tif mask_4x_crop.tif

Some calculation is needed to get the above four numbers passed to -srcwin. They represent the starting column
and row of the crop, and its width and height (from left to right). The PAN image and the magnified mask hopefully
have the same heights, though for a different image collection that height may not be 29072, so that will need to be
adjusted for any specific dataset. The width of the magnified mask image should be 35280, and above we used 100
less than this value.

The above flow was tested for WV-2, and for other sensors adjustments may be needed.

The result of this command must be a mask image which has precisely the same dimensions as the PAN image,
and the two must agree perfectly (with no offsets) if they are drawn on top of each other in stereo_gui in the
View->Single window mode.
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10.22.8 Using non-Digital Globe images

Stereo with bathymetry was tested with RPC cameras. In fact, the above examples can be re-run by just replacing dg
with rpc for the -t option. (It is suggested that the shoreline shapefile and the water plane be redone for the RPC
case. It is expected that the results will change to a certain extent.)

Experiments were also done with pinhole cameras (using the nadirpinhole session) with both raw and map-
projected images, and using the alignment methods ‘epipolar’, ‘affineepipolar’, ‘homography’, and ‘none’, giving
plausible results.

10.22.9 Effect of bathymetry correction on the output DEM

It is instructive to compare the DEMs with and without the bathymetry correction.

The bathymetry correction results in the points in the output triangulated cloud being pushed “down”, as the rays
emanating from the cameras become “steeper” after meeting the water.

Yet, a DEM is obtained by binning and doing weighted averaging of the points in the cloud. It can happen that with the
bathymetry correction on, a point may end up in a different bin than with it off, with the result being that a handful of
heights in the bathymetry-corrected DEM can be slightly above the same heights in the DEM without the correction,
which is counter-intuitive.

This however will happen only close to the water-land interface and is an expected gridding artifact. (A different DEM
grid size may result in the artifacts changing location and magnitude.)
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CHAPTER

ELEVEN

SHAPE-FROM-SHADING EXAMPLES

ASP provides a tool, named sfs (Section 13.44), that can improve the level of detail of DEMs created by ASP or any
other source using shape-from-shading (SfS). The tool takes as input one or more camera images, a DEM at roughly
the same resolution as the images, and returns a refined DEM. This chapter shows in a lot of detail how this tool is to
be used.

sfs works only with ISIS cub images. It has been tested thoroughly with Lunar LRO NAC datasets, and some
experiments were done with Mars HiRISE images and with pictures from Charon, Pluto’s moon. As seen later in the
text, it returns reasonable results on the Moon as far as 85° and even 89.6° South.

Currently, sfs is computationally expensive, and is practical only for DEMs whose width and height are several
thousand pixels. It can be sensitive to errors in the position and orientation of the cameras, the accuracy of the initial
DEM, and to the value of the two weights it uses. Yet, with some effort, it can work quite well.

A tool named parallel_sfs is provided (Section 13.37) that parallelizes sfs using multiple processes (optionally
on multiple machines) by splitting the input DEM into tiles with padding, running sfs on each tile, and then blending
the results.

The sfs program can model position-dependent albedo, different exposure values for each camera, shadows in the
input images, and regions in the DEM occluded from the Sun. It can refine the positions and orientations of the
cameras.

The tool works by minimizing the cost function∫ ∫ ∑
k

[Ik(φ)(x, y)− TkA(x, y)Rk(φ)(x, y)]
2
+ µ

∥∥∇2φ(x, y)
∥∥2 + λ [φ(x, y)− φ0(x, y)]2 dx dy.

Here, Ik(φ)(x, y) is the k-th camera image interpolated at pixels obtained by projecting into the camera 3D points
from the terrain φ(x, y), Tk is the k-th image exposure, A(x, y) is the per-pixel albedo, Rk(φ)(x, y) is the reflectance
computed from the terrain for k-th image,

∥∥∇2φ(x, y)
∥∥2 is the sum of squares of all second-order partial derivatives

of φ, µ > 0 is a smoothing term, and λ > 0 determines how close we should stay to the input terrain φ0 (smaller µ
will show more detail but may introduce some artifacts, and smaller λ may allow for more flexibility in optimization
but the terrain may move too far from the input).

We use either the regular Lambertian reflectance model, or the Lunar-Lambertian model [McE91], more specifically
as given in [LHK06] (equations (3) and (4)). Also supported is the Hapke model, [JGL+06], [FSC+13], [Hap08],
[HNS93]. Custom values for the coefficients of these models can be passed to the program.
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11.1 How to get good test images

We obtain the images from http://wms.lroc.asu.edu/lroc/search (we search for EDR images of type NACL and NACR).

A faster (but not as complete) interface is provided by http://ode.rsl.wustl.edu/moon/indexproductsearch.aspx. The
related site http://ode.rsl.wustl.edu/moon/indextools.aspx?displaypage=lolardr can provide LOLA datasets which can
be used as (sparse) ground truth.

We advise the following strategy for picking images. First choose a small longitude-latitude window in which to
perform a search for images. Pick two images that are very close in time and with a big amount of overlap (ideally
they would have consecutive orbit numbers). Those can be passed to ASP’s stereo tool to create an initial DEM.
Then, search for other images close to the center of the maximum overlap of the first two images. Pick one or more
of those, ideally with different illumination conditions than the first two. Those (together with one of the first two
images) can be used for SfS.

To locate the area of spatial overlap, the images can be map-projected (either with cam2map with a coarse resolution)
or with mapproject, using for example the LOLA DEM as the terrain to project onto, or the DEM obtained from
running stereo on those images. Then the images can be overlayed as georeferenced images in stereo_gui. A
good sanity check is to examine the shadows in various images. If they point in different directions in the images
and perhaps also have different lengths, that means that illumination conditions are different enough, which will help
constrain the sfs problem better.

11.2 Running sfs at 1 meter/pixel using a single image

In both this and the next sections we will work with LRO NAC images taken close to the Lunar South Pole, at a
latitude of 85° South (the tool was tested on equatorial regions as well). We will use four images, M139939938LE,
M139946735RE, M173004270LE, and M122270273LE.

We first retrieve the data sets.

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/ \
LROLRC_0005/DATA/SCI/2010267/NAC/M139939938LE.IMG

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/ \
LROLRC_0005/DATA/SCI/2010267/NAC/M139946735RE.IMG

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/ \
LROLRC_0009/DATA/SCI/2011284/NAC/M173004270LE.IMG

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/ \
LROLRC_0002/DATA/MAP/2010062/NAC/M122270273LE.IMG

Then we convert them to ISIS cubes, initialize the SPICE kernels, and perform radiometric calibration and echo
correction. Here are the steps, illustrated on the first image:

lronac2isis from = M139939938LE.IMG to = M139939938LE.cub
spiceinit from = M139939938LE.cub
lronaccal from = M139939938LE.cub to = M139939938LE.cal.cub
lronacecho from = M139939938LE.cal.cub to = M139939938LE.cal.echo.cub

We rename, for simplicity, the obtained four processed datasets to A.cub, B.cub, C.cub, and D.cub.

The first step is to run stereo to create an initial guess DEM. We picked for this the first two of these images. These
form a stereo pair, that is, they have a reasonable baseline and sufficiently close times of acquisition (hence very similar
illuminations). These conditions are necessary to obtain a good stereo result.

parallel_stereo --job-size-w 1024 --job-size-h 1024 A.cub B.cub \
--left-image-crop-win 0 7998 2728 2696 \
--right-image-crop-win 0 9377 2733 2505 \
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--threads 16 --corr-seed-mode 1 --subpixel-mode 3 \
run_full1/run

Next we create a DEM at 1 meter/pixel, which is about the resolution of the input images. We use the stereographic
projection since this dataset is very close to the South Pole. Then we crop it to the region we’d like to do SfS on.

point2dem -r moon --stereographic --proj-lon 0 \
--proj-lat -90 run_full1/run-PC.tif

gdal_translate -projwin -15471.9 150986 -14986.7 150549 \
run_full1/run-DEM.tif run_full1/run-crop-DEM.tif

This creates a DEM of size 456 × 410 pixels.

Then we run sfs:

sfs -i run_full1/run-crop-DEM.tif A.cub -o sfs_ref1/run \
--reflectance-type 1 \
--smoothness-weight 0.08 --initial-dem-constraint-weight 0.0001 \
--max-iterations 10 --use-approx-camera-models \
--crop-input-images

The smoothness weight is a parameter that needs tuning. If it is too small, SfS will return noisy results, if it is too
large, too much detail will be blurred. Here we used the Lunar Lambertian model. The meaning of the other sfs
options can be looked up in Section 13.44.

We show the results of running this program in Fig. 11.1. The left-most figure is the hill-shaded original DEM, which
was obtained by running:

hillshade --azimuth 300 --elevation 20 run_full1/run-crop-DEM.tif \
-o run_full1/run-crop-hill.tif

The second image is the hill-shaded DEM obtained after running sfs for 10 iterations.

The third image is, for comparison, the map-projection of A.cub onto the original DEM, obtained via the command:

mapproject --tr 1 run_full1/run-crop-DEM.tif A.cub A_map.tif --tile-size 128

The forth image is the colored absolute difference between the original DEM and the SfS output, obtained by running:

geodiff --absolute sfs_ref1/run-DEM-final.tif run_full1/run-crop-DEM.tif
colormap --min 0 --max 2 --colormap-style binary-red-blue \

run-DEM-final__run-crop-DEM-diff.tif

Fig. 11.1: An illustration of sfs. The images are, from left to right, the original hill-shaded DEM, the hill-shaded
DEM obtained from sfs, the image A.cub map-projected onto the original DEM, and the absolute difference of the
original and final DEM, where the brightest shade of red corresponds to a 2 meter height difference.
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It can be seen that the optimized DEM provides a wealth of detail and looks quite similar to the input image. It also did
not diverge significantly from the input DEM. We will see in the next section that SfS is in fact able to make the refined
DEM more accurate than the initial guess (as compared to some known ground truth), though that is not guaranteed,
and most likely did not happen here where just one image was used.

11.3 SfS with multiple images in the presence of shadows

In this section we will run sfs with multiple images. We would like to be able to see if SfS improves the accuracy
of the DEM rather than just adding detail to it. We evaluate this using the following (admittedly imperfect) approach.
We reduce the resolution of the original images by a factor of 10, run stereo with them, followed by SfS using the
stereo result as an initial guess and with the resampled images. As ground truth, we create a DEM from the original
images at the higher resolution of 1 meter/pixel, which we bring closer to the initial guess for SfS using pc_align.
We would like to know if running SfS brings us even closer to this “ground truth” DEM.

The most significant challenge in running SfS with multiple images is that shape-from-shading is highly sensitive to
errors in camera position and orientation. It is suggested to bundle-adjust the cameras first (Section 13.5).

It is important to note that bundle adjustment may fail if the images have sufficiently different illumination, as it will
not be able to find matches among images. A solution to this is discussed in Section 11.4, and it amounts to bridging
the gap between images with dis-similar illumination with more images of intermediate illumination. It is suggested
that these images be sorted by Sun azimuth angle, then they should be mapprojected, and visual inspection be used to
verify that the illumination is changing gradually. The bundle adjustment program should be invoked with the images
sorted this way.

To make bundle adjustment and stereo faster, we first crop the images, such as shown below (the crop parameters can
be determined via stereo_gui).

crop from = A.cub to = A_crop.cub sample = 1 line = 6644 nsamples = 2192 nlines = 4982
crop from = B.cub to = B_crop.cub sample = 1 line = 7013 nsamples = 2531 nlines = 7337
crop from = C.cub to = C_crop.cub sample = 1 line = 1 nsamples = 2531 nlines = 8305
crop from = D.cub to = D_crop.cub sample = 1 line = 1 nsamples = 2531 nlines = 2740

Then we bundle-adjust and run stereo

bundle_adjust A_crop.cub B_crop.cub C_crop.cub D_crop.cub \
--min-matches 1 -o run_ba/run

stereo A_crop.cub B_crop.cub run_full2/run --subpixel-mode 3 \
--bundle-adjust-prefix run_ba/run

This will result in a point cloud, run_full2/run-PC.tif, which will lead us to the “ground truth” DEM. As
mentioned before, we’ll in fact run SfS with images subsampled by a factor of 10. Subsampling is done by running
the ISIS reduce command:

for f in A B C D; do
reduce from = ${f}_crop.cub to = ${f}_crop_sub10.cub sscale = 10 lscale = 10

done

We run bundle adjustment and stereo with the subsampled images using commands analogous to the above:

bundle_adjust A_crop_sub10.cub B_crop_sub10.cub C_crop_sub10.cub D_crop_sub10.cub \
--min-matches 1 -o run_ba_sub10/run --ip-per-tile 100000

stereo A_crop_sub10.cub B_crop_sub10.cub run_sub10/run --subpixel-mode 3 \
--bundle-adjust-prefix run_ba_sub10/run

We’ll obtain a point cloud named run_sub10/run-PC.tif.
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We’ll bring the “ground truth” point cloud closer to the initial guess for SfS using pc_align:

pc_align --max-displacement 200 run_full2/run-PC.tif run_sub10/run-PC.tif \
-o run_full2/run --save-inv-transformed-reference-points

This step is extremely important. Since we ran two bundle adjustment steps, and both were without ground control
points, the resulting clouds may differ by a large translation, which we correct here. Hence we would like to make the
“ground truth” terrain aligned with the datasets on which we will perform SfS.

Next we create the “ground truth” DEM from the aligned high-resolution point cloud, and crop it to a desired region:

point2dem -r moon --tr 10 --stereographic --proj-lon 0 --proj-lat -90 \
run_full2/run-trans_reference.tif

gdal_translate -projwin -15540.7 151403 -14554.5 150473 \
run_full2/run-trans_reference-DEM.tif run_full2/run-crop-DEM.tif

We repeat the same steps for the initial guess for SfS:

point2dem -r moon --tr 10 --stereographic --proj-lon 0 --proj-lat -90 \
run_sub10/run-PC.tif

gdal_translate -projwin -15540.7 151403 -14554.5 150473 \
run_sub10/run-DEM.tif run_sub10/run-crop-DEM.tif

After this, we run sfs itself. Since our dataset has many shadows, we found that specifying the shadow thresholds for
the tool improves the results. The thresholds can be determined using stereo_gui. This can be done by turning on
threshold mode from the GUI menu, and then clicking on a few points in the shadows. The largest of the determined
pixel values will be the used as the shadow threshold. Then, the thresholded images can be visualized/updated from
the menu as well, and this process can be iterated. We also found that for LRO NAC a shadow threshold value of 0.003
works well enough usually.

sfs -i run_sub10/run-crop-DEM.tif A_crop_sub10.cub C_crop_sub10.cub \
D_crop_sub10.cub -o sfs_sub10_ref1/run --threads 4 \
--smoothness-weight 0.12 --initial-dem-constraint-weight 0.0001 \
--reflectance-type 1 --float-exposure \
--float-cameras --use-approx-camera-models \
--max-iterations 10 --crop-input-images \
--bundle-adjust-prefix run_ba_sub10/run \
--shadow-thresholds '0.00162484 0.0012166 0.000781663'

We compare the initial guess to sfs to the “ground truth” DEM obtained earlier and the same for the final refined
DEM using geodiff as in the previous section. Before SfS:

geodiff --absolute run_full2/run-crop-DEM.tif run_sub10/run-crop-DEM.tif
gdalinfo -stats run-crop-DEM__run-crop-DEM-diff.tif | grep Mean=

and after SfS:

geodiff --absolute run_full2/run-crop-DEM.tif sfs_sub10_ref1/run-DEM-final.tif
gdalinfo -stats run-crop-DEM__run-DEM-final-diff.tif | grep Mean=

The mean error goes from 2.64 m to 1.29 m, while the standard deviation decreases from 2.50 m to 1.29 m. Visually
the refined DEM looks more detailed as well as seen in Fig. 11.2. The same experiment can be repeated with the
Lambertian reflectance model (reflectance-type 0), and then it is seen that it performs a little worse.

We also show in this figure the first of the images used for SfS, A_crop_sub10.cub, map-projected upon the
optimized DEM. Note that we use the previously computed bundle-adjusted cameras when map-projecting, otherwise
the image will show as shifted from its true location:
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mapproject sfs_sub10_ref1/run-DEM-final.tif A_crop_sub10.cub A_crop_sub10_map.tif \
--bundle-adjust-prefix run_ba_sub10/run

Fig. 11.2: An illustration of sfs. The images are, from left to right, the hill-shaded initial guess DEM for SfS, the
hill-shaded DEM obtained from sfs, the “ground truth” DEM, and the first of the images used in SfS map-projected
onto the optimized DEM.

11.4 Dealing with large camera errors and LOLA comparison

SfS is very sensitive to errors in camera positions and orientations. These can be optimized as part of the problem,
but if they are too far off, the solution will not be correct. As discussed earlier, bundle adjustment should be used
to correct these errors, and if the images have different enough illumination that bundle adjustment fails, one should
add new images with intermediate illumination conditions (while sorting the full set of images by azimuth angle and
verifying visually by mapprojection the gradual change in illumination).

As a fallback alternative, interest point matches among the images can be selected manually. Picking about 4 interest
pints in each image may be sufficient. Ideally they should be positioned far from each other, to improve the accuracy.

Below is one example of how we select interest points, run SfS, and then compare to LOLA, which is an independently
acquired sparse dataset of 3D points on the Moon. According to [SZN+11], the LOLA accuracy is on the order of 1 m.
To ensure a meaningful comparison of stereo and SfS with LOLA, we resample the LRO NAC images by a factor of
4, making them nominally 4 m/pixel. This is not strictly necessary, the same exercise can be repeated with the original
images, but it is easier to see the improvement due to SfS when comparing to LOLA when the images are coarser than
the LOLA error itself.

We work with the same images as before. They are resampled as follows:

for f in A B C D; do
reduce from = ${f}_crop.cub to = ${f}_crop_sub4.cub sscale=4 lscale=4

done

The stereo and point2dem tools are run to get a first-cut DEM. Bundle adjustment is not done at this stage yet.

stereo A_crop_sub4.cub B_crop_sub4.cub run_stereo_noba_sub4/run --subpixel-mode 3
point2dem --stereographic --proj-lon -5.7113451 --proj-lat -85.000351 \

run_stereo_noba_sub4/run-PC.tif --tr 4

We would like now to automatically or manually pick interest points for the purpose of doing bundle adjustment. It
much easier to compute these if the images are first mapprojected, which brings them all into the same perspective.
This approach is described in Section 13.47.2, and here just the relevant commands are shown.

for f in A B C D; do
mapproject --tr 4 run_stereo_noba_sub4/run-DEM.tif ${f}_crop_sub4.cub \
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${f}_crop_sub4_v1.tif --tile-size 128
done

(Optional manual interest point picking in the mapprojected images can happen here.)

P='A_crop_sub4_v1.tif B_crop_sub4_v1.tif' # to avoid long lines below
Q='C_crop_sub4_v1.tif D_crop_sub4_v1.tif run_stereo_noba_sub4/run-DEM.tif'
bundle_adjust A_crop_sub4.cub B_crop_sub4.cub C_crop_sub4.cub D_crop_sub4.cub \

-o run_ba_sub4/run --mapprojected-data "$P $Q" \
--min-matches 1

An illustration is shown in Fig. 11.3.

Fig. 11.3: An illustration of how interest points are picked manually for the purpose of bundle adjustment and then
SfS.

A good sanity check to ensure that at this stage cameras are aligned properly is to map-project using the newly obtained
camera adjustments and then overlay the obtained images in the GUI. The features in all images should be perfectly
on top of each other.

for f in A B C D; do
mapproject --tr 4 run_stereo_noba_sub4/run-DEM.tif ${f}_crop_sub4.cub \
${f}_crop_sub4_v2.tif --tile-size 128 --bundle-adjust-prefix run_ba_sub4/run

done

This will also show where the images overlap, and hence on what portion of the DEM we can run SfS.

Then we run stereo, followed by SfS.

stereo A_crop_sub4.cub B_crop_sub4.cub run_stereo_yesba_sub4/run \
--subpixel-mode 3 --bundle-adjust-prefix run_ba_sub4/run

point2dem --stereographic --proj-lon -5.7113451 --proj-lat -85.000351 \
run_stereo_yesba_sub4/run-PC.tif --tr 4

gdal_translate -srcwin 138 347 273 506 run_stereo_yesba_sub4/run-DEM.tif \
run_stereo_yesba_sub4/run-crop1-DEM.tif

sfs -i run_stereo_yesba_sub4/run-crop1-DEM.tif A_crop_sub4.cub \
C_crop_sub4.cub D_crop_sub4.cub -o sfs_sub4_ref1_th_reg0.12_wt0.001/run \
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--shadow-thresholds '0.00149055 0.00138248 0.000747531' \
--threads 4 --smoothness-weight 0.12 --initial-dem-constraint-weight 0.001 \
--reflectance-type 1 --float-exposure --float-cameras --max-iterations 20 \
--use-approx-camera-models --crop-input-images \
--bundle-adjust-prefix run_ba_sub4/run

We fetch the portion of the LOLA dataset around the current DEM from the site described earlier, and save it as
RDR_354E355E_85p5S84SPointPerRow_csv_table.csv. It is necessary to align our stereo DEM with
this dataset to be able to compare them. We choose to bring the LOLA dataset into the coordinate system of the DEM,
using:

pc_align --max-displacement 280 run_stereo_yesba_sub4/run-DEM.tif \
RDR_354E355E_85p5S84SPointPerRow_csv_table.csv -o run_stereo_yesba_sub4/run \
--save-transformed-source-points

Then we compare to the aligned LOLA dataset the input to SfS and its output:

geodiff --absolute -o beg --csv-format '1:lon 2:lat 3:radius_km' \
run_stereo_yesba_sub4/run-crop1-DEM.tif run_stereo_yesba_sub4/run-trans_source.csv

geodiff --absolute -o end --csv-format '1:lon 2:lat 3:radius_km' \
sfs_sub4_ref1_th_reg0.12_wt0.001/run-DEM-final.tif \
run_stereo_yesba_sub4/run-trans_source.csv

We see that the mean error between the DEM and LOLA goes down, after SfS, from 1.14 m to 0.90 m, while the
standard deviation decreases from 1.18 m to 1.06 m.

11.5 Running SfS with an external initial guess DEM and extreme il-
lumination

Here we will illustrate how SfS can be run in a very difficult situation. We chose a site very close to the Lunar South
Pole, at around 89.7° South. We used an external DEM as an initial guess terrain, in this case the LOLA gridded DEM,
as such a DEM has values in permanently shadowed regions. The terrain size is 5 km by 5 km at 1 meter/pixel (we
also ran a 10 km by 10 km region in the same location).

Here the topography is very steep, the shadows are very long and vary drastically from image to image, and some
portions of the terrain show up only in some images. All this makes it very hard to register images to each other and
to the ground. We solved this by choosing very carefully a large set of representative images.

We recommend that the process outlined below first be practiced with just a couple of images on a small region, which
will make it much faster to iron out any issues.

The first step is to fetch the underlying LOLA DEM. We use the 20 meter/pixel one, resampled to 1 meter/pixel,
creating a DEM named ref.tif.

wget http://imbrium.mit.edu/DATA/LOLA_GDR/POLAR/IMG/LDEM_80S_20M.IMG
wget http://imbrium.mit.edu/DATA/LOLA_GDR/POLAR/IMG/LDEM_80S_20M.LBL
pds2isis from = LDEM_80S_20M.LBL to = ldem_80s_20m.cub
image_calc -c "0.5*var_0" ldem_80s_20m.cub -o ldem_80s_20m_scale.tif
gdal_translate -projwin -7050.500 -5759.500 -1919.500 -10890.500 \

ldem_80s_20m_scale.tif ldem_80s_20m_scale_crop.tif
gdalwarp -r cubicspline -tr 1 1 ldem_80s_20m_scale_crop.tif ref.tif

Note that we scaled its heights by 0.5 per the information in the LBL file. The documentation of your DEM needs to
be carefully studied to see if this applies in your case.

The site:
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https://core2.gsfc.nasa.gov/PGDA/LOLA_5mpp/

has higher-accuracy LOLA DEMs but only for a few locations.

Later when we mapproject images onto this DEM at 1 m/pixel, those will be computed at integer multiples of this grid.
Given that the grid size is 1 m, the extent of those images as displayed by gdalinfo will have a fractional value of
0.5. It is very recommended to have gdalwarp above produce a result on the same grid (for when sfs_blend is
used later). Hence, as an example (taken from a different dataset), if the extent of the file output by this command is:

638.299 -2350.859 1596.299 -1493.859

(the order is xmin, ymin, xmax, ymax), the gdalwarp command better be rerun with the option:

-te 638.5 -2350.5 1595.5 -1494.5

so we increase the min values to have a fractional value of 0.5 and decrease the max values for the same purpose.

By far the hardest part of this exercise is choosing the images. We downloaded several hundred of them by visiting
the web site noted earlier and searching by the longitude-latitude bounds. The .IMG images were converted to .cub as
before, and they were mapprojected onto the reference DEM, initially at a lower resolution to get a preview of things.

The mapprojected images were mosaicked together using dem_mosaicwith the option --block-max, with a large
value of --block-size (larger than the image size), and using the --t_projwin option to specify the region of
interest (in stereo_gui one can find this region by selecting it with Control-Mouse). When the mosaicking tool
runs, the sum of pixels in the current region for each image will be printed to the screen. Images with a positive sum
of pixels are likely to contribute to the desired region.

The obtained subset of images should be sorted by the Sun azimuth (this angle is printed when running sfs with the
--query option on the .cub files). Out of those, the following were kept:

M114859732RE.cal.echo.cub 73.1771
M148012947LE.cal.echo.cub 75.9232
M147992619RE.cal.echo.cub 78.7806
M152979020RE.cal.echo.cub 96.895
M117241732LE.cal.echo.cub 97.9219
M152924707RE.cal.echo.cub 104.529
M150366876RE.cal.echo.cub 104.626
M152897611RE.cal.echo.cub 108.337
M152856903RE.cal.echo.cub 114.057
M140021445LE.cal.echo.cub 121.838
M157843789LE.cal.echo.cub 130.831
M157830228LE.cal.echo.cub 132.74
M157830228RE.cal.echo.cub 132.74
M157809893RE.cal.echo.cub 135.604
M139743255RE.cal.echo.cub 161.014
M139729686RE.cal.echo.cub 162.926
M139709342LE.cal.echo.cub 165.791
M139695762LE.cal.echo.cub 167.704
M142240314RE.cal.echo.cub 168.682
M142226765RE.cal.echo.cub 170.588
M142213197LE.cal.echo.cub 172.497
M132001536LE.cal.echo.cub 175.515
M103870068LE.cal.echo.cub 183.501
M103841430LE.cal.echo.cub 187.544
M142104686LE.cal.echo.cub 187.765
M162499044LE.cal.echo.cub 192.747
M162492261LE.cal.echo.cub 193.704
M162485477LE.cal.echo.cub 194.662
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M162478694LE.cal.echo.cub 195.62
M103776992RE.cal.echo.cub 196.643
M103776992LE.cal.echo.cub 196.643

(the Sun azimuth is shown on the right, in degrees). These were then mapprojected onto the reference DEM at 1
m/pixel using the South Pole stereographic projection specified in this DEM. The parallel_bundle_adjust
tool is employed to co-register the images and correct camera errors.

parallel_bundle_adjust --processes 8 --ip-per-tile 1000 --overlap-limit 30 \
--num-iterations 100 --num-passes 2 --min-matches 1 --datum D_MOON \
<images> --mapprojected-data '<mapprojected images> ref.tif' -o ba/run \
--save-intermediate-cameras --match-first-to-last

For bundle adjustment we in fact used even more images that overlap with this area, but likely this set is sufficient, and
it is this set that was used later for shape-from-shading. Here more bundle adjustment iterations are desirable, but this
step takes too long. And a large --ip-per-tile can make a difference in images with rather different different
illumination conditions but it can also slow down the process a lot.

It is very important to have a lot of images during bundle adjustment, to ensure that there are enough overlaps and
sufficiently similar illumination conditions among them for bundle adjustment to succeed. Later, just a subset can be
used for shape-from-shading, enough to cover the entire region, preferable with multiple illumination conditions at
each location.

Towards the poles the Sun may describe a full loop in the sky, and hence the earliest images (sorted by azimuth) may
become similar to the latest ones. That is the reason above we used the option --match-first-to-last.

Note that this invocation may run for more than a day, or even more. And it may be necessary to get good convergence.
If the process gets interrupted, or the user gives up on waiting, the adjustments obtained so far can still be usable, if
invoking bundle adjustment, as above, with --save-intermediate-cameras.One may also consider reducing
--overlap-limit to perhaps 20 though there is some risk in doing that if images fail to overlap enough.

A very critical part of the process is aligning the obtained cameras to the ground:

pc_align --max-displacement 400 --save-transformed-source-points \
--compute-translation-only --csv-format '1:lon 2:lat 3:height_above_datum' \
ref.tif ba/run-final_residuals_no_loss_function_pointmap_point_log.csv \
-o ba/run

The value of --max-displacement could be too high perhaps, it is suggested to also experiment with half of that
and keep the result that has the smaller error.

The flag --compute-translation-only turned out to be necessary as pc_align was introducing a bogus
rotation.

The obtained alignment transform can be applied to the cameras to make them aligned to the ground:

mkdir -p ba_align
/bin/cp -fv ba/run* ba_align
bundle_adjust --skip-matching --num-iterations 0 --force-reuse-match-files \

--num-passes 1 --initial-transform ba/run-transform.txt \
--input-adjustments-prefix ba/run <images> -o ba_align/run

The images should now be projected onto this DEM as:

mapproject --tr 1 --bundle-adjust-prefix ba_align/run \
ref.tif image.cub image.map.tif

One should verify if they are precisely on top of each other and on top of the LOLA DEM in stereo_gui. If any
shifts are noticed, with the images relative to each other, or to this DEM, that is a sign of some issues. If the shift is
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relative to this DEM, perhaps one can try the alignment above with a different value of the max displacement.

There are occasions in which the alignment transform is still slightly inaccurate. Then, one can refine the cameras
using the reference terrain as a constraint in bundle adjustment:

mkdir -p ba_align_ref
/bin/cp -fv ba_align/run* ba_align_ref
bundle_adjust --skip-matching --num-iterations 15 --force-reuse-match-files \

--num-passes 1 --input-adjustments-prefix ba_align/run <images> \
--save-intermediate-cameras --camera-weight 1 --heights-from-dem ref.tif \
--heights-from-dem-weight 0.1 --heights-from-dem-robust-threshold 10 \
-o ba_align_ref/run

It is suggested that the images be map-projected with the cameras both before and after this step, as on some
occasions this step may make things worse rather than better. One may also attempt to vary the value of
--heights-from-dem-weight.

As before, the process may take forever, and if interrupted, perhaps the adjustments saved so far may be good enough.

After mapprojecting with the newly refined cameras in ba_align_ref, any residual alignment errors should go
away. The value used for --heights-from-dem-weight may need some experimentation. The reference DEM
has vertical error as well, so of this value is too high, it may bind too tightly to this somewhat inaccurate DEM. Yet,
making it too low may not constrain sufficiently the uncertainty that exists in the height of triangulated points after
bundle adjustment, which is rather high since LRO NAC is mostly looking down so the convergence angle among any
rays going through matching interest points is small.

It is suggested that the user examine the file:

ba_align_ref/run-final_residuals_no_loss_function_pointmap_point_log.csv

to see if the reprojection errors (column 4) are reasonably small, say mostly on the order of 0.1 pixels (some outliers
are expected though). The triangulated point cloud from this file should also hopefully be close to the reference DEM.
Their difference is found as:

geodiff --absolute \
--csv-format '1:lon 2:lat 3:height_above_datum' ref.tif \
ba_align_ref/run-final_residuals_no_loss_function_pointmap_point_log.csv \
-o ba_align_ref/run

Some of the differences that will be saved to disk are likely outliers, but mostly they should be small, perhaps on the
order of 1 meter.

The file:

ba_align_ref/run-final_residuals_no_loss_function_raw_pixels.txt

should also be examined. It has the x and y pixel residuals for each pixel. The norm of each pixel residual can
be computed, and their median can be found (at some point this will be done automatically). Images for which the
median pixel residual is larger than 1 pixel or which have too few such residuals should be excluded from running SfS,
as likely for those the cameras are not correctly positioned.

If, even after this step, the mapprojected images fail to be perfectly on top of each other, or areas with poor coverage
exist, more images with intermediate illumination conditions and more terrain coverage should be added and the pro-
cess should be restarted. As a last resort, any images that do not overlay correctly must be removed from consideration
for the shape-from-shading step.

Next, SfS follows:
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parallel_sfs -i ref.tif <images> --shadow-threshold 0.005 \
--bundle-adjust-prefix ba_align_ref/run -o sfs/run \
--use-approx-camera-models --crop-input-images \
--blending-dist 10 --min-blend-size 100 --threads 4 \
--smoothness-weight 0.08 --initial-dem-constraint-weight 0.001 \
--reflectance-type 1 --max-iterations 5 --save-sparingly \
--tile-size 200 --padding 50 --num-processes 20 \
--nodes-list <machine list>

It was found empirically that a shadow threshold of 0.005 was good enough. It is also possible to specify individual
shadow thresholds if desired, via --custom-shadow-threshold-list. This may be useful for images having
diffuse shadows cast from elevated areas that are far-off. For those, the threshold may need to be raised to as much as
0.01.

The first step that will happen when this is launched is computing the exposures. That one can be a bit slow, and can
be done offline, using the flag --compute-exposures-only in this tool, and then the computed exposures can
be passed to the command above via the --image-exposures-prefix option.

When it comes to selecting the number of nodes to use, it is good to notice how many tiles the parallel_sfs
program produces (the tool prints that), as a process will be launched for each tile. Since above it is chosen to run 20
processes on each node, the number of nodes can be the number of tiles over 20, or perhaps half or a quarter of that,
in which case it will take longer to run things. One should examine how much memory these processes use and adjust
this number accordingly.

The obtained shape-from-shading terrain should be studied carefully to see if it shows any systematic shift or rotation
compared to the initial LOLA gridded terrain. For that, the SfS terrain can be overlayed as a georeferenced image on
top of the initial terrain in stereo_gui, and the SfS terrain can be toggled on and off.

If that is the case, another step of alignment can be used. This time one can do features-based alignment rather than
based on point-to-point calculations. This works better on lower-resolution versions of the inputs, when the high-
frequency discrepancies do not confuse the alignment, so, for example, at 1/4 or 1/8 resolution of the DEMs, as
created stereo_gui:

pc_align --initial-transform-from-hillshading rigid \
ref_sub4.tif sfs_dem_sub4.tif -o align_sub4/run --num-iterations 0 \
--max-displacement -1

That alignment transform can then be applied to the full SfS DEM:

pc_align --initial-transform align_sub4/run-transform.txt \
ref.tif sfs_dem.tif -o align/run --num-iterations 0 \
--max-displacement -1 --save-transformed-source-points \
--max-num-reference-points 1000 --max-num-source-points 1000

(The number of points being used is not important since we will just apply the alignment and transform the full DEM.)

The aligned SfS DEM can be regenerated from the obtained cloud as:

point2dem --tr 1 --search-radius-factor 2 --t_srs projection_str \
align/run-trans_source.tif

Here, the projection string should be the same one as in the reference LOLA DEM named ref.tif. It can be found by
invoking:

gdalinfo -proj4 ref.tif

and looking for the value of the PROJ.4 field.
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It is worth experimenting repeating this experiment at sub2 and sub8, and examine visually the obtained hillshaded
DEMs overlaid on top of the reference DEM and see which agree with the reference the most (even though the SfS
DEM and the reference DEM can be quite different, it is possible to notice subtle shifts upon careful inspection).

If this approach fails to remove the visually noticeable displacement between the SfS and LOLA terrain, one can try
to nudge the SfS terrain manually, by using pc_align as:

pc_align --initial-ned-translation \
"north_shift east_shift down_shift" \
ref.tif sfs_dem.tif -o align/run --num-iterations 0 \
--max-displacement -1 --save-transformed-source-points \
--max-num-reference-points 1000 --max-num-source-points 1000

Here, value of down_shift should be 0, as we attempt a horizontal shift. For the other ones one may try
some values and observe their effect in moving the SfS terrain to the desired place. The transform obtained
by using these numbers will be saved in align/run-transform.txt (while being converted from the local
North-East-Down coordinates to ECEF) and can be used below instead of the transform obtained with invoking
--initial-transform-from-hillshading.

If a manual rotation nudge is necessary, use pc_align with --initial-rotation-angle.

It is very recommended to redo the whole process using the improved alignment. First, the alignment trans-
form must be applied to the camera adjustments, by invoking bundle adjustment as earlier, with the best cam-
eras so far provided via --input-adjustments-prefix and the latest pc_align transform passed to
--initial-transform. Then, another pass of bundle adjustment while doing registration to the ground should
take place as earlier, with --heights-from-dem and other related options. Lastly mapprojection and SfS should
be repeated. (Any bundle adjustment operation can reuse the match files from previous attempts if copying them over
to the new output directory.)

Ideally, after all this, there should be no systematic offset between the SfS terrain and the reference LOLA terrain.

The geodiff tool can be deployed to see how the SfS DEM compares to the initial guess or to the raw ungridded
LOLA measurements. One can use the --absolute option for this tool and then invoke colormap to colorize the
difference map. By and large, the SfS DEM should not differ from the reference DEM by more than 1-2 meters.

To create a maximally lit mosaic one can mosaic together all the mapprojected images using the same camera adjust-
ments that were used for SfS. That is done as follows:

dem_mosaic --max -o max_lit.tif image1.map.tif .... imageN.map.tif

After an SfS solution was found, with the cameras well-adjusted to each other and to the ground, and it is desired to
add new camera images (or perhaps fix some of the existing poorly aligned cameras), one can create .adjust files for
the new camera images (by perhaps using the identity adjustment), run bundle adjustment again with the supplemented
set of camera adjustments as initial guess using --input-adjustments-prefix, and one may keep fixed the
cameras for which the adjustment is already good using the option `--fixed-camera-indices.

If in some low-light locations the SfS DEM still has seams, one may consider invoking sfs with
--robust-threshold 0.004, removing some of the offending images, or with a larger value for
--shadow-threshold (such as 0.007) for those images, or a larger value for --blending-dist.
A per-image shadow threshold which overrides the globally set value can be specified via
--custom-shadow-threshold-list. Sometimes this improves the solution in some locations while
introducing artifacts in other.

If the SfS DEM has localized defects, those can be fixed in a small region and then blended in. For example, a clip
around the defect, perhaps of dimensions 150-200 pixels, can be cut from the input DEM. If that clip has noise which
affects the final SfS result, it can be blurred with dem_mosaic, using for example, --dem-blur-sigma 5. Then
one can try to run SfS on just this clip, and if needed vary some of the SfS parameters or exclude some images. If
happy enough with the result, this SfS clip can be blended back to the larger SfS DEM with dem_mosaic with the
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--priority-blending-length option, whose value can be set, for example, to 50, to blend over this many
pixels inward from the boundary of the clip to be inserted.

After computing a satisfactory SfS DEM, it can be processed to replace the values in the permanently shadowed areas
with values from the original LOLA DEM, with a transition region. That can be done as:

sfs_blend --lola-dem lola_dem.tif --sfs-dem sfs_dem.tif \
--max-lit-image-mosaic max_lit.tif --image-threshold 0.005 \
--lit-blend-length 25 --shadow-blend-length 5 \
--min-blend-size 100 --weight-blur-sigma 5 \
--output-dem sfs_blend.tif --output-weight sfs_weight.tif

Here, the inputs are the LOLA and SfS DEMs, the maximally lit mosaic provided as before, the shadow threshold (the
same value as in invoking SfS should be used). The outputs are the blended DEM as described earlier, and the weight
which tells how much the SfS DEM contributed to the blended DEM. See this tool’s manual page for more details.

(Note that if one tries to blend an SfS terrain obtained after pc_align, that won’t have the same extent as the LOLA
terrain, which will make this command fail. It is suggested that the input LOLA terrain be prepared with gdalwarp
-te <corners> as described earlier, and then the SfS terrain be regenerated starting with this terrain, with any
desired transform applied to the cameras before parallel_sfs is rerun, and then the extent of the LOLA and SfS
terrains will agree. Or, though this is not recommended, the SfS terrain which exists so far and the LOLA terrain can
both be interpolated using the same gdalwarp -te <corners> command.)

The error in the SfS DEM (before or after the blending with LOLA) can be estimated as:

parallel_sfs --estimate-height-errors -i sfs_dem.tif \
-o sfs_error/run <other options as above>

See the sfs manual page describing how the estimation is implemented.

11.6 Insights for getting the most of SfS

Here are a few suggestions we have found helpful when running sfs:

• First determine the appropriate smoothing weight µ by running a small clip, and using just one image. A value
between 0.06 and 0.12 seems to work all the time with LRO NAC, even when the images are subsampled. The
other weight, λ, can be set to something small, like 0.0001. This can be increased to 0.001 if noticing that the
output DEM strays too far.

• Bundle-adjustment for multiple images is crucial, to eliminate camera errors which will result in sfs converging
to a local minimum. This is described in Section 11.4.

• More images with more diverse illumination conditions result in more accurate terrain. Ideally there should be
at least 3 images, with the shadows being, respectively, on the left, right, and then perhaps missing or small.
Images with intermediate illumination conditions may be needed for bundle adjustment to work.

• Floating the albedo (option --float-albedo) can introduce instability and divergence, it should be avoided
unless obvious albedo variation is seen in the images.

• Floating the DEM at the boundary (option --float-dem-at-boundary) is also suggested to be avoided.

• Overall, the best strategy is to first use SfS for a single image and not float any variables except the DEM being
optimized, and then gradually add images and float more variables and select whichever approach seems to give
better results.

• If an input DEM is large, see the earlier section for a detailed recipe.

• The mapproject program can be used to map-project each image onto the resulting SfS DEM (with the
camera adjustments solved using SfS). These orthoimages can be mosaicked using dem_mosaic. If the --max
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option is used with this tool, it create a mosaic with the most illuminated pixels from this image. If during SfS
the camera adjustments were solved accurately, this mosaic should have little or no blur.

• For challenging datasets it is suggested to first work at 1/4th of the full resolution (the resolution of an ISIS
cube can be changed using the reduce command, and the DEM can be made coarser with gdalwarp or by
converting it to a cloud with pc_align with zero iterations and then regenerated with point2dem). This
should make the whole process perhaps an order of magnitude faster. Any obtained camera adjustment files
are still usable at the full resolution (after an appropriate rename), but it is suggested that these adjustments be
reoptimized using the full resolution cameras, hence these should be initial guesses for bundle_adjust’s
--input-adjustments-prefix option.
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CHAPTER

TWELVE

EXPERIMENTAL FEATURES

12.1 Managing Camera Jitter

In this section we will talk about big source of inaccuracies in DigitalGlobe/Maxar images, after CCD artifacts, namely
jitter, and how to correct it.

It is important to note that jitter correction is highly experimental, and it is not ready for production.

The order in which these corrections need to be handled is the following. First, CCD artifacts are corrected. Then,
optionally, images are mosaicked with dg_mosaic and map-projected. And jitter should be handled last, during
stereo. An exception is made for WV03 images, for which CCD artifacts do not appear to have a significant effect.

Camera jitter has its origin in the fact that the measured position and orientation of the image-acquiring line sensor
as specified in a camera XML file is usually not perfectly accurate, the sensor in fact wiggles slightly from where
it is assumed to be as it travels through space and appends rows of pixels to the image. This results in slight errors
in the final DEM created using stereo. Those are most clearly seen in the intersection error map output by invoking
point2dem --errorimage.

ASP provides support for correcting this jitter, at least its lower-frequency component. During stereo, right before the
triangulation step, so after the left-to-right image disparity is computed, it can solve for adjustments to apply to the
satellite position and orientation. Those adjustments are placed along-track (hence at several lines in the image) with
interpolation between them. This is quite analogous to what bundle_adjust is doing, except that the latter uses
just one adjustment for each image.

This process can be triggered by invoking stereo with --image-lines-per-piecewise-adjustment
arg. A recommended value here is 1000, though it is suggested to try several values. A smaller value of arg
will result in more adjustments being used (each adjustment being responsible for fewer image lines), hence provid-
ing finer-grained control, though making this number too small may result in over-fitting and instability. A smaller
value here will also require overall more interest point matches (as computed from the disparity), which is set via
--num-matches-for-piecewise-adjustment.

Jitter correction is more effective if stereo is preceded by bundle adjustment, with the adjusted cameras then being
passed to stereo via --bundle-adjust-prefix.

If it appears that the adjustments show some instability at the starting and ending lines due to not enough
matches being present (as deduced from examining the intersection error image), the locations of the
first and last adjustment (and everything in between) may be brought closer to each other, by modifying
--piecewise-adjustment-percentiles. Its values are by default 5 and 95, and could be set for exam-
ple to 10 and 90. For very tall images, it may be desirable to use instead values closer to 0 and 100.

See Section 14.5 for the full list of parameters used in jitter correction.

In order for jitter correction to be successful, the disparity map (*-F.tif) should be of good quality. If that is not
the case, it is suggested to redo stereo, and use, for example, map-projected images, and in the case of terrain lacking
large scale features, the value corr-seed-mode 3 (Section 4.4).
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An illustration of jitter correction is given in Fig. 12.1.

Fig. 12.1: Example of a colorized intersection error map before (left) and after jitter correction.
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CHAPTER

THIRTEEN

TOOLS

This chapter provides a overview of the various tools that are provided as part of the Ames Stereo Pipeline, and a
summary of their command line options.

13.1 add_spot_rpc

The add_spot_rpc tool creates an RPC model to approximate a SPOT5 sensor model. The RPC model can be
appended to the end of a SPOT5 metadata file, allowing it to be used with the RPC session type in other ASP tools.
The most important application is to map project SPOT5 images, then to perform stereo on the map projected images
with the spot5maprpc session type.

If the output file does not exist, a new file is created containing the RPC model. Otherwise the RPC model is appended
to an existing file. When an existing SPOT5 metadata file is the output file, the new RPC model is properly inserted
into the file so that it is ready to use.

An example for how to use this tool is given in Section 10.15.

Usage:

add_spot_rpc <input metadata file> -o <output file>

It is important to note that the tool expects the minimum and maximum simulation box heights (in meters, above the
datum) in which to compute the RPC approximation. The defaults are 0 and 8000, corresponding to sea level and the
highest location on Earth. Narrowing down these numbers (if it is known what range of terrain heights is expected)
may result in slightly more accurate models.

Command-line options for add_spot_rpc:

-o, --output-prefix <arg> Specify the output prefix.

--min-height <arg (default: 0)> The minimum height (in meters) above the WGS84 datum of the
simulation box in which to compute the RPC approximation.

--max-height <arg (default: 8000)> The maximum height (in meters) above the WGS84 datum of the
simulation box in which to compute the RPC approximation.

--num-samples <arg (default: 100)> How many samples to use between the minimum and maximum
heights.

--penalty-weight <arg (default: 0.1)> Penalty weight to use to keep the higher-order RPC coefficients
small. Higher penalty weight results in smaller such coefficients.

-v, --version Display the version of software.

-h, --help Display this help message.

151



Ames Stereo Pipeline Documentation, Release 3.0.0

13.2 aster2asp

The aster2asp tool takes as input a directory containing ASTER images and associated metadata, and creates TIF
and XML files that can then be passed to stereo to create a point cloud.

An example for how to use this tool is given in Section 10.17.

The tool can only process Level 1A ASTER images. The input should be a directory containing visible and near-
infrared (VNIR) nadir (Band3N) and backward (Band3B) images, together with plain text files containing values for
the satellite positions, sight vectors, longitudes, latitudes, lattice points, and radiometric correction tables. These files
are described in [AHR02].

Usage:

aster2asp <input directory> -o <output prefix>

The tool will apply the existing radiometric corrections to the the images, and save two images with Float32 pixels
with names like out-Band3N.tif and out-Band3B.tif. Based on the metadata mentioned earlier, it will
create approximate RPC camera models in XML format (Section 10.14) for the left and right cameras, following
[GNKaab15], with names of the form out-Band3N.xml and out-Band3B.xml (we do not perform yet any jitter
corrections as described in that paper).

These can then be passed to stereo as:

stereo -t rpc out-Band3N.tif out-Band3B.tif out-Band3N.xml out-Band3B.xml \
out_stereo/run

It is important to note that the tool expects the minimum and maximum simulation box heights (in meters, above the
datum) in which to compute the RPC approximation. The defaults are 0 and 8000, corresponding to sea level and the
highest location on Earth. Narrowing down these numbers (if it is known what range of terrain heights is expected)
may result in slightly more accurate models.

Command-line options for aster2asp:

-o, --output-prefix <arg> Specify the output prefix.

--min-height <arg (default: 0)> The minimum height (in meters) above the WGS84 datum of the
simulation box in which to compute the RPC approximation.

--max-height <arg (default: 8000)> The maximum height (in meters) above the WGS84 datum of the
simulation box in which to compute the RPC approximation.

--num-samples <arg (default: 100)> How many samples to use between the minimum and maximum
heights.

--penalty-weight <arg (default: 0.1)> Penalty weight to use to keep the higher-order RPC coefficients
small. Higher penalty weight results in smaller such coefficients.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tif-compress <None|LZW|Deflate|Packbits (default: LZW)> TIFF Compression method.

-v, --version Display the version of software.

-h, --help Display this help message.
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13.3 bathy_plane_calc

The bathy_plane_calc program takes as input a shapefile and a DEM, finds the 3D positions of the vertices of the
shapefile in the DEM in ECEF coordinates using bilinear interpolation, converts those points to a local stereographic
projection, and fits a plane through them.

When the vertices in the shapefile are picked at the water-land interface in the DEM, this would give the surface of the
water to be used for bathymetry correction. The obtained plane can be slightly non-horizontal due to imperfections in
the camera positions and orientations, and in the input DEM.

Further motivation for this tool and an example of how to use it in practice is given in Section 10.22.2.

Example:

bathy_plane_calc --shapefile shape.shp --dem dem.tif \
--output-inlier-shapefile out_shape.shp \
--bathy-plane plane.txt

It will produce output as follows:

Found 4 / 9 inliers.
Max distance to the plane (meters): 2.26214
Max inlier distance to the plane (meters): 0.0131818
Mean plane height above datum (meters): -21.3521

Command-line options for bathy_plane_calc:

-h, --help Display the help message.

--shapefile <filename> The shapefile with vertices whose coordinates will be looked up in the DEM.

--dem <filename> The DEM to use.

--outlier-threshold <double> A value, in meters, to determine the distance from a sampled point on
the DEM to the best-fit plane to determine if it will be marked as outlier and not
included in the calculation of that plane. The default is 0.2.

--bathy-plane arg The output file storing the computed plane as four coefficients a, b, c, d, with the
plane being a*x + b*y + c*z + d = 0.

--output-inlier-shapefile <string> If specified, save at this location the shape file with the inlier ver-
tices.

--num-ransac-iterations <integer> Number of RANSAC iterations to use to find the best-fitting
plane. The default is 1000.

--dem-minus-plane <string (default: “”)> If specified, subtract from the input DEM the best-fit plane
and save the obtained DEM to this GeoTiff file.

--use-ecef-water-surface Compute the best fit plane in ECEF coordinates rather than in a local stere-
ographic projection. Hence don’t model the Earth curvature. Not recommended.
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13.4 bathy_threshold_calc.py

The bathy_threshold_calc.py program takes as input a single-channel image, for example, band 7 of a World-
View multispectral image, and computes the threshold separating the water and land pixels.

See Section 10.22.3 for further context, and a sample output and graph.

This tool needs Python 3 and some additional Python packages to be installed with conda.

Conda can be obtained from

https://docs.conda.io/en/latest/miniconda.html

Run:

./Miniconda3-latest-Linux-x86_64.sh

on Linux, and the appropriate version on OSX (this script needs to be made executable first). Use the suggested:

$HOME/miniconda3

directory for installation.

Next, with the conda environment activated, the needed packages can be installed as follows:

conda create --name bathy -c conda-forge python=3.6 gdal
conda activate bathy
conda install -c conda-forge numpy scipy matplotlib

This program can be invoked as:

~/miniconda3/envs/bathy/bin/python $(which bathy_threshold_calc.py) \
--image image.tif --num-samples 1000000

Here it is assumed that ASP’s bin directory is in the path, otherwise the full path to this Python script must be
specified above.

Command-line options for bathy_threshold_calc.py:

-h, --help Display the help message.

--image <filename> The single-channel image to use to find the water-land threshold.

--num-samples <integer (default: 1000000)> The number of samples to pick from the image (more
samples will result in more accuracy but will be slower).

--no-plot Do not show the plot.

13.5 bundle_adjust

The bundle_adjust program performs bundle adjustment on a given set of images and cameras. An introduction
to bundle adjustment, and some advanced usage, including solving for intrinsics, can be found in Section 8.

This tool can use several underlying least-squares minimization algorithms, the default is Google’s Ceres Solver
(http://ceres-solver.org/).

Usage:

bundle_adjust <images> <cameras> <optional ground control points> \
-o <output prefix> [options]
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Example (for ISIS):

bundle_adjust file1.cub file2.cub file3.cub -o run_ba/run

Example (for Digital Globe Earth data, using ground control points):

bundle_adjust file1.tif file2.tif file1.xml file2.xml gcp_file.gcp \
--datum WGS_1984 -o run_ba/run --num-passes 2

Here, we invoked the tool with two passes, which also enables removal of outliers by reprojection error and disparity
(the options below have more detail).

Example (for generic pinhole camera data, using estimated camera positions):

bundle_adjust file1.JPG file2.JPG file1.tsai file2.tsai -o run_ba/run \
-t nadirpinhole --inline-adjustments --datum WGS_1984 \
--camera-positions nav_data.csv \
--csv-format "1:file 6:lat 7:lon 9:height_above_datum"

Here we assumed that the cameras point towards some planet’s surface and used the nadirpinhole session. If this
assumption is not true one should use the pinhole session, though this one often does not perform as well when
finding interest points in planetary context.

This tool will write the adjustments to the cameras as *.adjust files starting with the specified output pre-
fix. In order for stereo to use the adjusted cameras, it should be passed this output prefix via the option
--bundle-adjust-prefix. For example:

stereo file1.cub file2.cub run_stereo/run \
--bundle-adjust-prefix run_ba/run

If the --inline-adjustments option is used, no separate adjustments will be written, rather, the tool will save to
disk copies of the input cameras with adjustments already applied to them. These output cameras can then be passed
directly to stereo:

stereo file1.JPG file2.JPG run_ba/run-file1.tsai \
run_ba/run-file2.tsai run_stereo/run

The bundle_adjust program can read camera adjustments from a previous run, via
--input-adjustments-prefix string. It can also apply to the input cameras a transform as output
by pc_align, via --initial-transform string. This is useful if a DEM produced by ASP was aligned to
a ground truth, and it is desired to apply the same alignment to the cameras that were used to create that DEM. The
initial transform can have a rotation, translation, and scale, and it is applied after the input adjustments are read, if
those are present. An example is shown in (Section 13.39.11).

If the --datum option is specified, bundle_adjust will write the mean absolute residuals (reprojection errors)
for each triangulated point, before and after optimization. The files are named

{output-prefix}-initial_residuals_no_loss_function_pointmap_point_log.csv

and

{output-prefix}-final_residuals_no_loss_function_pointmap_point_log.csv

(there are also versions of these files incorporating the Ceres loss function, which attenuates large residuals, those have
in their names loss rather than no_loss). Such files can be inspected to see at which pixels the residual error is
large. One can also invoke point2dem with the --csv-format option to grid these files for visualization in the
GUI. Here is a sample file:
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# lon, lat, height_above_datum, mean_residual, num_observations
-55.1169093561696002, -69.3430771656333178, 4.82452381754674064, 0.114133363354161105,
↪→ 2

The field num_observations counts how many images each point gets projected into.

13.5.1 Ground Control Points

A number of plain-text files containing ground control points (GCP) can be passed as inputs to bundle_adjust.

These can either be created by hand, or using stereo_gui (Section 13.47.2).

A GCP file must end with a .gcp extension, and contain one ground control point per line. Each line must have the
following fields:

• ground control point id (integer)

• latitude (in degrees)

• longitude (in degrees)

• height above datum (in meters), with the datum itself specified separately

• x, y, z standard deviations (three positive floating point numbers, smaller values suggest more reliable measure-
ments)

On the same line, for each image in which the ground control point is visible there should be:

• image file name

• column index in image (float)

• row index in image (float)

• column and row standard deviations (two positive floating point numbers, smaller values suggest more reliable
measurements)

The fields can be separated by spaces or commas. Here is a sample representation of a ground control point measure-
ment:

5 23.7 160.1 427.1 1.0 1.0 1.0 image1.tif 124.5 19.7 1.0 1.0 image2.tif 254.3 73.9 1.
↪→0 1.0

When the --use-lon-lat-height-gcp-error flag is used, the three standard deviations are interpreted as
applying not to x, y, z but to latitude, longitude, and height above datum (in this order). Hence, if the latitude and
longitude are known accurately, while the height less so, the third standard deviation can be set to something larger.

Command-line options for bundle_adjust:

-h, --help Display the help message.

-o, --output-prefix <filename> Prefix for output filenames.

--cost-function <string (default: Cauchy)> Choose a cost function from: Cauchy, PseudoHuber, Hu-
ber, L1, L2

--robust-threshold <double (default:0.5)> Set the threshold for robust cost functions. Increasing this
makes the solver focus harder on the larger errors.

--datum <string> Set the datum. This will override the datum from the input images and also
--t_srs, --semi-major-axis, and --semi-minor-axis. Options:

• WGS_1984
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• D_MOON (1,737,400 meters)

• D_MARS (3,396,190 meters)

• MOLA (3,396,000 meters)

• NAD83

• WGS72

• NAD27

• Earth (alias for WGS_1984)

• Mars (alias for D_MARS)

• Moon (alias for D_MOON)

--semi-major-axis <float (default: 0)> Explicitly set the datum semi-major axis in meters.

--semi-minor-axis <float (default: 0)> Explicitly set the datum semi-minor axis in meters.

-t, --session-type <string> Select the stereo session type to use for processing. Usually the program
can select this automatically by the file extension. Options: nadirpinhole pinhole
isis dg rpc spot5 aster opticalbar csm.

--min-matches <integer (default: 30)> Set the minimum number of matches between images that
will be considered.

--num-iterations <integer (default: 100)> Set the maximum number of iterations.

--parameter-tolerance <double (default: 1e-8)> Stop when the relative error in the variables being
optimized is less than this.

--overlap-limit <integer (default: 0)> Limit the number of subsequent images to search for matches
to the current image to this value. By default try to match all images.

--overlap-list <string> A file containing a list of image pairs, one pair per line, separated by a space,
which are expected to overlap. Matches are then computed only among the im-
ages in each pair.

--auto-overlap-buffer <double> Try to automatically determine which images overlap. Only supports
Worldview style XML camera files.

--match-first-to-last Match the first several images to several last images by extending the logic of
–overlap-limit past the last image to the earliest ones.

--rotation-weight <double (default: 0.0)> A higher weight will penalize more rotation deviations
from the original configuration.

--translation-weight <double (default: 0.0)> A higher weight will penalize more translation devia-
tions from the original configuration.

--camera-weight <double(=1.0)> The weight to give to the constraint that the camera posi-
tions/orientations stay close to the original values (only for the Ceres solver).
A higher weight means that the values will change less. The options
--rotation-weight and --translation-weight can be used for
finer-grained control and a stronger response.

--ip-per-tile <integer> How many interest points to detect in each 10242 image tile. If this option isn’t
given, it will default to an automatic determination.

--ip-per-image <integer> How many interest points to detect in each image (default: automatic deter-
mination). It is overridden by –ip-per-tile if provided.

13.5. bundle_adjust 157



Ames Stereo Pipeline Documentation, Release 3.0.0

--ip-detect-method <integer (default: 0)> Choose an interest point detection method from: 0=OBA-
loG, 1=SIFT, 2=ORB.

--epipolar-threshold <double (default: -1)> Maximum distance from the epipolar line to search for
IP matches. If this option isn’t given, it will default to an automatic determination.

--ip-inlier-factor <double (default: 1.0/15)> A higher factor will result in more interest points, but
perhaps also more outliers.

--ip-uniqueness-threshold <double (default: 0.7)> A higher threshold will result in more interest
points, but perhaps less unique ones.

--nodata-value <double(=NaN)> Pixels with values less than or equal to this number are treated as
no-data. This overrides the no-data values from input images.

--individually-normalize Individually normalize the input images instead of using common values.

--inline-adjustments If this is set, and the input cameras are of the pinhole or panoramic type, apply
the adjustments directly to the cameras, rather than saving them separately as
.adjust files.

--input-adjustments-prefix <string> Prefix to read initial adjustments from, written by a previous
invocation of this program.

--initial-transform <string> Before optimizing the cameras, apply to them the 4 × 4 rotation +
translation transform from this file. The transform is in respect to the planet
center, such as written by pc_align’s source-to-reference or reference-to-source
alignment transform. Set the number of iterations to 0 to stop at this step. If
--input-adjustments-prefix is specified, the transform gets applied af-
ter the adjustments are read.

--fixed-camera-indices <string> A list of indices, in quotes and starting from 0, with space as separa-
tor, corresponding to cameras to keep fixed during the optimization process.

--fix-gcp-xyz If the GCP are highly accurate, use this option to not float them during the opti-
mization.

--use-lon-lat-height-gcp-error When having GCP, interpret the three standard deviations in the GCP
file as applying not to x, y, and z, but rather to latitude, longitude, and height.

--solve-intrinsics Optimize intrinsic camera parameters. Only used for pinhole cameras.

--intrinsics-to-float <arg> If solving for intrinsics and desired to float only a few of them, specify
here, in quotes, one or more of: focal_length, optical_center, other_intrinsics.

--intrinsics-to-share <arg> If solving for intrinsics and desired to share only a few of them, specify
here, in quotes, one or more of: focal_length, optical_center, other_intrinsics. By
default all of the intrinsics are shared so to not share any of them pass in a blank
string.

--intrinsics-limits <arg> Set a string in quotes that contains min max ratio pairs for intrinsic param-
eters. For example, “0.8 1.2” limits the parameter to changing by no more than
20 percent. The first pair is for focal length, the next two are for the center pixel,
and the remaining pairs are for other intrinsic parameters. If too many pairs are
passed in the program will throw an exception and print the number of intrinsic
parameters the cameras use. Cameras adjust all of the parameters in the order
they are specified in the camera model unless it is specified otherwise in Section
17.1. Unfortunately, setting limits can greatly slow down the solver.

--num-passes <integer (default: 2)> How many passes of bundle adjustment to
do. If more than one, outliers will be removed be-
tween passes using --remove-outliers-params and
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--remove-outliers-by-disparity-params, and re-optimization
will take place. Residual files and a copy of the match files with the outliers
removed will be written to disk.

--num-random-passes <integer (default: 0)> After performing the normal bundle adjustment passes,
do this many more passes using the same matches but adding random offsets
to the initial parameter values with the goal of avoiding local minima that the
optimizer may be getting stuck in. Only the results for the optimization pass with
the lowest error are kept.

--remove-outliers-params <’pct factor err1 err2’ (default: ‘75.0 3.0 2.0 3.0’)> Outlier removal
based on percentage, when more than one bundle adjustment pass is used.
Triangulated points (that are not GCP) with reprojection error in pixels larger
than: min(max(<pct>-th percentile * <factor>, <err1>), <err2>) will be
removed as outliers. Hence, never remove errors smaller than <err1> but always
remove those bigger than <err2>. Specify as a list in quotes.

--remove-outliers-by-disparity-params <pct factor> Outlier removal based on the disparity of inter-
est points (difference between right and left pixel), when more than one bundle
adjustment pass is used. For example, the 10% and 90% percentiles of disparity
are computed, and this interval is made three times bigger. Interest points (that
are not GCP) whose disparity fall outside the expanded interval are removed as
outliers. Instead of the default 90 and 3 one can specify pct and factor, without
quotes.

--elevation-limit <min max> Remove as outliers interest points (that are not GCP) for which the ele-
vation of the triangulated position (after cameras are optimized) is outside of this
range. Specify as two values.

--lon-lat-limit <min_lon min_lat max_lon max_lat> Remove as outliers interest points (that are not
GCP) for which the longitude and latitude of the triangulated position (after cam-
eras are optimized) are outside of this range. Specify as four values.

--reference-terrain <filename> An externally provided trustworthy 3D terrain, either as a DEM or as
a lidar file, very close (after alignment) to the stereo result from the given images
and cameras that can be used as a reference, instead of GCP, to optimize the
intrinsics of the cameras.

--max-num-reference-points <integer (default: 100000000)> Maximum number of (randomly
picked) points from the reference terrain to use.

--disparity-list <’filename12 filename23 . . . ’> The unaligned disparity files to use when optimizing
the intrinsics based on a reference terrain. Specify them as a list in quotes sepa-
rated by spaces. First file is for the first two images, second is for the second and
third images, etc. If an image pair has no disparity file, use ‘none’.

--max-disp-error <double (default: -1)> When using a reference terrain as an external control, ig-
nore as outliers xyz points which projected in the left image and transported by
disparity to the right image differ by the projection of xyz in the right image by
more than this value in pixels.

--reference-terrain-weight <double (default: 1)> How much weight to give to the cost function
terms involving the reference terrain.

--heights-from-dem <filename> If the cameras have already been bundle-adjusted and aligned
to a known high-quality DEM, in the triangulated xyz points replace
the heights with the ones from this DEM, and fix those points unless
--heights-from-dem-weight is positive.
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--heights-from-dem-weight <double (default: -1)> How much weight to give to keep the triangu-
lated points close to the DEM if specified via --heights-from-dem. If the
weight is not positive, keep the triangulated points fixed.

–heights-from-dem-robust-threshold <double (default: -1)> If positive, this is the robust threshold to use keep the
triangulated points close to the DEM if specified via –heights-from-dem. This is applied after the point dif-
ferences are multiplied by –heights-from-dem-weight. It should help with attenuating large height difference
outliers.

--csv-format <string> Specify the format of input CSV files as a list of entries col-
umn_index:column_type (indices start from 1). Examples: 1:x 2:y 3:z
(a Cartesian coordinate system with origin at planet center is assumed, with
the units being in meters), 5:lon 6:lat 7:radius_m (longitude and lat-
itude are in degrees, the radius is measured in meters from planet center),
3:lat 2:lon 1:height_above_datum, 1:easting 2:northing
3:height_above_datum (need to set --csv-proj4; the height above da-
tum is in meters). Can also use radius_km for column_type, when it is again
measured from planet center.

--csv-proj4 <string> The PROJ.4 string to use to interpret the entries in input CSV files, if those files
contain Easting and Northing fields.

--min-triangulation-angle <degrees (default: 0.1)> The minimum angle, in degrees, at which rays
must meet at a triangulated point to accept this point as valid. It must be a positive
value.

--ip-triangulation-max-error <float> When matching IP, filter out any pairs with a triangulation error
higher than this.

--forced-triangulation-distance <meters> When triangulation fails, for example, when input cameras
are inaccurate, artificially create a triangulation point this far ahead of the camera,
in units of meters.

--ip-num-ransac-iterations <iterations (default: 1000)> How many RANSAC iterations to do in in-
terest point matching.

--save-cnet-as-csv Save the initial control network containing all interest points in the format used
by ground control points, so it can be inspected.

--camera-positions <filename> CSV file containing estimated positions of each camera. Only used
with the inline-adjustments setting to initialize global camera coordinates. If
used, the csv-format setting must also be set. The “file” field is searched for
strings that are found in the input image files to match locations to cameras.

--disable-pinhole-gcp-init Don’t try to initialize pinhole camera coordinates using provided GCP co-
ordinates. Set this if you only have one image per GCP or if the pinhole initial-
ization process is not producing good results.

--transform-cameras-using-gcp Use GCP, even those that show up in just an image, to transform
cameras to ground coordinates. Need at least two images to have at least 3 GCP
each. If at least three GCP each show up in at least two images, the transform
will happen even without this option using a more robust algorithm.

--position-filter-dist <max_dist (default: -1.0)> If estimated camera positions are used, this option
can be used to set a threshold distance in meters between the cameras. If any
pair of cameras is farther apart than this distance, the tool will not attempt to find
matching interest points between those two cameras.

--force-reuse-match-files Force reusing the match files even if older than the images or cameras.
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--enable-rough-homography Enable the step of performing datum-based rough homography for in-
terest point matching. This is best used with reasonably reliable input cameras
and a wide footprint on the ground.

--skip-rough-homography Skip the step of performing datum-based rough homography. This obso-
lete option is ignored as it is the default.

--enable-tri-ip-filter Enable triangulation-based interest points filtering. This is best used with reason-
ably reliable input cameras.

--disable-tri-ip-filter Disable triangulation-based interest points filtering. This obsolete option is ig-
nored as is the default.

--no-datum Do not assume a reliable datum exists, such as for irregularly shaped bodies.

--mapprojected-data <string> Given map-projected versions of the input images, the DEM they were
mapprojected onto, and IP matches among the mapprojected images, create IP
matches among the un-projected images before doing bundle adjustment. Specify
the mapprojected images and the DEM as a string in quotes, separated by spaces.
An example is in the documentation.

--save-intermediate-cameras Save the values for the cameras at each iteration.

--threads <integer (default: 0)> Set the number threads to use. 0 means use the default defined in the
program or in the .vwrc file. Note that when using more than one thread and
the Ceres option the results will vary slightly each time the tool is run.

-r, --report-level <integer (default: 10)> Use a value >= 20 to get increasingly more verbose output.

13.6 cam2map4stereo.py

This program takes similar arguments as the ISIS cam2map program, but takes two input images. With no arguments,
the program determines the minimum overlap of the two images, and the worst common resolution, and then map-
projects the two images to this identical area and resolution.

The detailed reasons for doing this, and a manual step-by-step walkthrough of what cam2map4stereo.py does is
provided in the discussion on aligning images in the Tutorial.

The cam2map4stereo.py is also useful for selecting a subsection and/or reduced resolution portion of the full
image. You can inspect a raw camera geometry image in qview after you have run spiceinit on it, select the latitude
and longitude ranges, and then use cam2map4stereo.py’s --lat, --lon, and optionally --resolution
options to pick out just the part you want.

Use the --dry-run option the first few times to get an idea of what cam2map4stereo.py does for you.

Command-line options for cam2map4stereo.py:

-h, --help Display the help message.

--manual Read the manual.

-m, --map <file.map> The mapfile to use for cam2map.

-p, --pixres <PIXRES> The pixel resolution mode to use for cam2map.

-r, --resolution <RESOLUTION> Resolution of the final map for cam2map.

-i, --interp <INTERP> Pixel interpolation scheme for cam2map.

-a, --lat <LAT> Latitude range for cam2map, where LAT is of the form min:max. So to specify
a latitude range between -5 and 10 degrees, it would look like --lat=-5:10.
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-o, --lon <LON> Longitude range for cam2map, where LON is of the form min:max. So to specify
a longitude range between 45 and 47 degrees, it would look like --lon=40:47.

-n, --dry-run Make calculations, and print the cam2map command that would be executed,
but don’t actually run it.

--prefix <path> Make all output files use this prefix. Default: no prefix.

-s, --suffix <suffix (default: map)> Suffix that gets inserted in the output file names.

13.7 cam2rpc

This tool is used to generate an approximate RPC model for any camera model supported by ASP, in a given longitude-
latitude-height region for a given datum, or for a terrain covered by a given DEM. If --save-tif-image is
specified, the image portion corresponding to the RPC model will be saved in the TIF format.

The obtained RPC models and images can be used with stereo (when the latter is invoked with --session-type
rpc and the correct datum is specified via --datum). These can also be passed to the third-party S2P and SETSM
stereo software, though both of these packages work for Earth only.

The accuracy of RPC models generally degrades if expected to cover very large regions. Hence, they can be used
piecewise, and the obtained terrain models from ASP can be then mosaicked together using dem_mosaic.

Example for ISIS cub cameras for Mars:

cam2rpc input.cub output.xml --session-type isis --datum D_MARS --save-tif-image \
--height-range -10000 -9000 --lon-lat-range 141.50 34.43 141.61 34.15 \
--num-samples 40 --penalty-weight 0.03 --gsd 1

Example for pinhole cameras, where instead of sampling a lon-lat-height box, values from a DEM are used.

cam2rpc input.tif input.tsai output.xml --session-type nadirpinhole \
--dem-file DEM.tif --save-tif-image --image-crop-box 90 70 5511 3675

Here we have constrained the RPC camera model and output image to not go beyond a given bounding box.

Usage:

cam2rpc [options] <camera-image> <camera-model> <output-rpc>

Command-line options for cam2rpc:

--datum <string> Set the datum. This will override the datum from the input images and also
--t_srs, --semi-major-axis, and --semi-minor-axis. Options:

• WGS_1984

• D_MOON (1,737,400 meters)

• D_MARS (3,396,190 meters)

• MOLA (3,396,000 meters)

• NAD83

• WGS72

• NAD27

• Earth (alias for WGS_1984)

• Mars (alias for D_MARS)
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• Moon (alias for D_MOON)

--semi-major-axis <double> Explicitly set the datum semi-major axis in meters.

--semi-minor-axis <double> Explicitly set the datum semi-minor axis in meters.

--t_srs <proj4 string> Specify a projection (PROJ.4 string) instead of the datum. Can also be an URL
or in WKT format, as for GDAL.

--dem-file <filename> Instead of using a datum and a longitude-latitude-height box, sample the sur-
face of this DEM.

--lon-lat-range <lon_min lat_min lon_max lat_max> The longitude-latitude range in which to com-
pute the RPC model. Specify in the format: lon_min lat_min lon_max lat_max.

--height-range <min_height max_height> Minimum and maximum heights above the datum in
which to compute the RPC model.

--num-samples <integer (default: 40)> How many samples to use in each direction in the longitude-
latitude-height range.

--penalty-weight <float (default: 0.03)> A higher penalty weight will result in smaller higher-order
RPC coefficients.

--save-tif-image Save a TIF version of the input image that approximately corresponds to the input
longitude-latitude-height range and which can be used for stereo together with the
RPC model.

--input-nodata-value <arg> Set the image input nodata value.

--output-nodata-value <arg> Set the image output nodata value.

-t, --session-type <string> Select the input camera model type. Normally this is auto-detected, but
may need to be specified if the input camera model is in XML format. Options:
nadirpinhole pinhole isis dg rpc spot5 aster opticalbar csm.

--bundle-adjust-prefix <string> Use the camera adjustment obtained by previously running bun-
dle_adjust with this output prefix.

--image-crop-box <minx miny widx widy> The output image and RPC model should not exceed this
box, specified in input image pixels as minx miny widx widy.

--no-crop Try to create an RPC model over the entire input image, even if the input
longitude-latitude-height box covers just a small portion of it. Not recommended.

--skip-computing-rpc Skip computing the RPC model.

--gsd <arg (default: -1)> Expected resolution on the ground, in meters. This is needed for SETSM.

--threads <arg> Select the number of processors (threads) to use.

--tile-size <arg arg (default: 256 256)> Image tile size used for multi-threaded processing.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tif-compress <None|LZW|Deflate|Packbits (default: LZW)> TIFF Compression method.

-v, --version Display the version of software.

-h, --help Display this help message.
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13.8 cam_gen

This tool will create a Pinhole or Optical Bar camera model given camera’s optical center, focal length, pixel pitch,
the longitude-latitude coordinates of the camera image corners (or some other pixels) projected onto a DEM, and the
DEM itself. A datum (and a height above it) can be used instead of the DEM. Normally all these inputs are known
only approximately, so the output camera model will not be quite precise either, yet it could be good enough to refine
later with bundle adjustment, which can also make use of the GCP file that this tool creates.

This program can be used with historical images for which camera position and orientation is not known. If the corners
of the image on the ground are not known, they could be guessed in Google Earth. A good DEM to infer the heights
from, at least for Earth, is the SRTM dataset. Section 10.18 makes use of cam_gen for SkySat images.

Usage:

cam_gen [options] <image-file> -o <camera-file>

Example:

cam_gen --refine-camera --lon-lat-values \
'-122.389 37.6273,-122.354 37.626,-122.358 37.6125,-122.393 37.6138' \
--reference-dem dem.tif --focal-length 553846.153846 \
--optical-center 1280 540 --pixel-pitch 1 \
img.tif -o img.tsai --gcp-file img.gcp --gcp-std 1e-2 \

Here we assume that the pixel pitch is 1, hence both the focal length and the optical center are in units of pixels. If the
focal length and pixel pitch are given in meters, and one assumes the optical center to be the center of the image, then
the optical center passed to this tool should be half of the image width and height, with both multiplied by the pixel
pitch, to make them in meters as well.

Some other pixels can be used instead of corners, if using the --pixel-values option.

Note that for Optical Bar cameras the camera parameters must be passed in using the --sample-file option
instead of specifying them all manually.

It is strongly suggested to mapproject the image onto the obtained camera to verify if it projects where expected:

mapproject dem.tif img.tif img.tsai img_map.tif

The output img_map.tif can be overlayed onto the hillshaded DEM in stereo_gui.

The camera obtained using this tool (whether with or without the --refine-camera option) can be further opti-
mized in bundle_adjust using the GCP file written above as follows:

bundle_adjust img.tif img.tsai img.gcp -o run/run --datum WGS84 \
--inline-adjustments --robust-threshold 10000

It is suggested that this is avoided by default. One has to be a bit careful when doing this optimization to ensure some
corners are not optimized at the expense of others. This is discussed in Section 9.4.

One can invoke orbitviz as:

orbitviz img.tif img.tsai -o orbit.kml

to visualize the computed camera above the ground in Google Earth.

This tool can also create a Pinhole camera approximating any camera supported by ASP, such as from ISIS cubes,
RPC cameras, etc., as long as the intrinsics are known, as above. For that, it will shoot rays from the image corners
(and also some inner points) using the provided camera that will intersect a reference DEM determining the footprint
on the ground, and then the best-fit pinhole model will be created based on that. Here’s an example for ISIS cameras:
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cam_gen image.cub --input-camera image.cub --focal-length 1000 \
--optical-center 500 300 --pixel-pitch 1 --height-above-datum 4000 \
--gcp-std 1 --datum WGS84 --refine-camera --reference-dem dem.tif \
-o output.tsai --gcp-file output.gcp

Here we passed the image as the input camera, since for ISIS cubes (and also for some RPC cameras) the camera
information is not stored in a separate camera file.

Command-line options for cam_gen:

-o, --output-camera-file <file.tsai> Specify the output camera file with a .tsai extension.

--camera-type <pinhole|opticalbar (default: pinhole)> Specify the camera type

--lon-lat-values <string> A (quoted) string listing numbers, separated by commas or spaces, having
the longitude and latitude (alternating and in this order) of each image corner.
The corners are traversed in the order 0,0 w,0 w,h, 0,h where w and h are the
image width and height.

--pixel-values <string> A (quoted) string listing numbers, separated by commas or spaces, having the
column and row (alternating and in this order) of each pixel in the raw image at
which the longitude and latitude is known. By default this is empty, and will be
populated by the image corners traversed as earlier.

--reference-dem <filename> Use this DEM to infer the heights above datum of the image corners.

--datum <string> Use this datum to interpret the longitude and latitude, unless a DEM is given.
Options:

• WGS_1984

• D_MOON (1,737,400 meters)

• D_MARS (3,396,190 meters)

• MOLA (3,396,000 meters)

• NAD83

• WGS72

• NAD27

• Earth (alias for WGS_1984)

• Mars (alias for D_MARS)

• Moon (alias for D_MOON)

--height-above-datum <float (default: 0)> Assume this height above datum in meters for the image
corners unless read from the DEM.

--sample-file <filename> Instead of manually specifying all of the camera parameters, specify a sam-
ple camera model file on disk to read them from.

--focal-length <float (default: 0)> The camera focal length.

--optical-center <float (default: 0 0)> The camera optical center.

--pixel-pitch <float (default: 0)> The camera pixel pitch.

--refine-camera After a rough initial camera is obtained, refine it using least squares.

--frame-index <filename> A file used to look up the longitude and latitude of image corners based on
the image name, in the format provided by the SkySat video product.
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--gcp-file <filename> If provided, save the image corner coordinates and heights in the GCP format to
this file.

--gcp-std <double (default: 1)> The standard deviation for each GCP pixel, if saving a GCP file. A
smaller value suggests a more reliable measurement, hence will be given more
weight.

--input-camera <filename> Create the output pinhole camera approximating this camera.

-t, --session-type <string> Select the input camera model type. Normally this is auto-detected, but
may need to be specified if the input camera model is in XML format. Options:
nadirpinhole, pinhole, isis, dg, rpc, spot5, aster, opticalbar, csm.

--bundle-adjust-prefix <path> Use the camera adjustment obtained by previously running bun-
dle_adjust when providing an input camera.

--threads <integer (default: 0)> Set the number of threads to use. 0 means use as many threads as
there are cores.

--tile-size <integer (default: 256 256)> Image tile size used for multi-threaded processing.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tif-compress <None|LZW|Deflate|Packbits> TIFF compression method.

-v, --version Display the version of software.

-h, --help Display this help message.

13.9 camera_calibrate

The camera_calibrate tool can generate camera models suitable for use by camera_solve and other
ASP tools. This tool only solves for intrinsic camera parameters; to obtain the camera pose you should use the
camera_solve tool. This tool is a wrapper around the OpenCV (http://opencv.org/) checkerboard calibration
tool which takes care of converting the output into readily usable formats. When you run the tool, three cam-
era model files will be created in the output folder: solve_cam_params.txt, vw_cam_params.tsai, and
ocv_cam_params.yml. The first file can be used as a camera calibration file for the camera_solve tool. The
second file is a pinhole camera format that is recognized by ASP but remember that the extrinsic parameters were not
solved for so ASP is limited in what it can do with the camera file. The last file contains the camera information as
formatted by the OpenCV calibration tool. If you use the first file as an input to camera_solve you must remember
to replace the wildcard image path in the file with the one to the images you want to use solve for (as opposed to the
checkerboard images).

In order to use this tool you must provide multiple images of the same checkerboard pattern acquired with the camera
you wish to calibrate. When calling the tool you must specify the number of internal square corners contained in
your checkerboard pattern (width and height can be swapped) so that OpenCV knows what to look for. You must also
specify an image wildcard path such as "checkers/image_.jpg". You may need to enclose this parameter in
quotes so that your command line does not expand the wildcard before it is passed to the tool. If you do not provide
the -box-size parameter the output calibration numbers will be unitless.

Usage:

> camera_calibrate [options] <output folder> <Board Height> <Board Width> <Image
↪→Wildcard> ...

Command-line options for camera_calibrate:

-h, --help Display this help message.

--overwrite Recompute any intermediate steps already completed on disk.
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--suppress-output Reduce the amount of program console output.

--box-size-cm <float> The size of the checkerboard squares in centimeters.

--duplicate-files Make a copy of the vw param file for each input camera.

13.10 camera_footprint

The tool camera_footprint computes what the footprint of in image would be if map projected on to a provided
datum or DEM and prints it to the screen. If a KML output path is provided it will also create a KML file containing
the footprint. The KML will show a box with an X pattern showing the points ASP used to compute the footprint.
This tool can be useful for debugging camera orientations or getting a quick overview of where images are located.

Usage:

camera_footprint [options] <camera-image> <camera-model>

Command-line options for camera_footprint:

-h, --help Display the help message.

--dem-file <filename> Intersect with this DEM instead of a datum.

--datum <string> Use this datum to interpret the heights. Options are: WGS_1984, D_MOON,
D_MARS, and MOLA.

--t_srs <proj string> Specify the georeference projection (PROJ.4 string).

-t, --session-type Select the stereo session type to use for processing. Normally this is autodetected.

--bundle-adjust-prefix <string> Use the camera adjustment obtained by previously running bun-
dle_adjust with this output prefix.

--output-kml <string> Write an output KML file at this location.

--quick Use a faster but less accurate computation.

13.11 camera_solve

The camera_solve tool generates pinhole sensor models (frame cameras), including camera poses, for input images
lacking metadata. See Section 9 for an overview and examples of using the tool.

The camera calibration passed with the --calib-file option should be a .tsai pinhole camera model file in one of
the formats compatible with ASP. Our supported pinhole camera models are described in Section 17.1.

You can use a set of estimated camera positions to register camera models in world coordinates. This method is not
as accurate as using ground control points but it may be easier to use. To do this, use the --camera-positions
parameter to bundle-adjust via the --bundle-adjust-params option similar to the example line below. If
you see the camera models shifting too far from their starting positions try using the --camera-weight option to
restrain their movement.

--bundle-adjust-params '--camera-positions nav.csv \
--csv-format "1:file 12:lat 13:lon 14:height_above_datum" --camera-weight 1.0'

This tool will generate two .tsai camera model files in the output folder per input image. The first file, appended with
.tsai, is in a local coordinate system and does not include optimizations for intrinsic parameters but it may be useful
for debugging purposes. The second file, appended with .final.tsai, contains the final solver results. If ground control
points or estimated camera positions were provided then the second file will be in a global coordinate system.
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Usage:

> camera_solve [options] <output folder> <Input Image 1> <Input Image 2> ...

Command-line options for camera_solve:

-h, --help Display this help message.

--datum <string> The datum to use when calibrating. Default is WGS84.

--calib-file <filename> Path to an ASP compatible pinhole model file containing camera model infor-
mation. The position and pose information will be ignored. If you want to use
a unique file for each input image, pass a space separated list of files surrounded
by quotes.

--gcp-file <filename> Path to a ground control point file. This allows the tool to generate cameras in a
global coordinate system.

--bundle-adjust-params <string> Additional parameters (in single quotes) to pass to the
bundle_adjust tool.

--theia-overrides <string> Override any option in the auto-generated Theia flag file. Set as
"--option1=val1 --option2=val2 ...".

--theia-flagfile <filename> Path to a custom Theia flagfile to use settings from. File paths specified in
this file are ignored.

--overwrite Recompute any intermediate steps already completed on disk.

--reuse-theia-matches Pass Theia’s IP find results into ASP instead of recomputing them to reduce
total processing time.

--suppress-output Reduce the amount of program console output.

This tool is a wrapper that relies on on two other tools to operate. The first of these is THEIA, as mentioned earlier,
for computing the relative poses of the cameras. ASP’s bundle_adjust tool is used to register the cameras in
world coordinates using the ground control points. If the tool does not provide good results you can customize the
parameters being passed to the underlying tools in order to improve the results. For bundle_adjust options, see
the description in this document. For more information about THEIA flagfile options see their website or edit a copy
of the default flagfile generated in the output folder.

13.12 colormap

The colormap tool reads a DEM and writes a corresponding color-coded height image that can be used for visual-
ization.

Usage:: colormap [options] <input DEM>

Command-line options for colormap:

--help Display a help message.

-s, --shaded-relief-file <filename> Specify a shaded relief image (grayscale) to apply to the colorized
image.

-o, --output-file <filename> Specify the output file.

--colormap-style <arg> Specify the colormap style. Options: binary-red-blue (default), jet, or the
name of a file having the colormap, similar to the file used by gdaldem.

--nodata-value <arg> Remap the DEM default value to the min altitude value.
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--min <arg> Minimum height of the color map.

--max <arg> Maximum height of the color map.

--moon Set the min and max height to good values for the Moon.

--mars Set the min and max height to good values for Mars.

--legend Generate an unlabeled legend, will be saved as legend.png.

13.13 convert_pinhole_model

This tool can be used to approximately convert a pinhole model from one of the types listed in Section 17.1 or an
optical bar model (Section 17.3) to any other pinhole model type. This can be convenient, for example, because the
Brown-Conrady and Photometrix models provide a fast formula to undistort pixels, while the distortion operation is
very slow, requiring a solver with multiple iterations using the undistortion formula at each step, which can make it
time-consuming to run bundle adjustment and epipolar alignment during stereo. For other models, such as Tsai and
Adjustable Tsai, the reverse is true, hence converting from the former to the latter models can be very convenient for
performance reasons.

This program can also be used to convert a pinhole or optical bar model to a pinhole model with RPC lens distortion,
which is a model where distortion is expressed as a ratio of polynomials. The RPC lens distortion model has the
advantage that both the forward and reverse distortion calculation are approximated using RPC, hence both of these
operations are fast, which can provide a large speedup when running stereo and bundle adjustment.

The degree of the RPC lens distortion can be specified via --rpc-degree. A smaller value is suggested to start
with, as lower-degree polynomials may be easier to interpret.

Usage:

convert_pinhole_model [options] <input image> <input camera> \
-o <output camera>

Example (convert a camera model to the RPC type):

convert_pinhole_model input.jpg input.tsai --output-type RPC \
--rpc-degree 2 -o output_rpc.tsai

Example (specify the image dimensions instead of the image, and convert to BrownConradyDistortion):

convert_pinhole_model input.tsai --output-type BrownConradyDistortion \
--image-size "5000 4000" -o output.tsai

Command-line options for convert_pinhole_model:

-h, --help Display this help message.

-o, --output-file <filename> Specify the output file. It is expected to have the .tsai extension.

--output-type <TsaiLensDistortion|BrownConradyDistortion|RPC (default: TsaiLensDistortion)>
The output model type.

--sample-spacing <number-of-pixels> Pick one out of this many consecutive pixels to sample. If not
specified, it will be auto-computed.

--rpc-degree <int (default: 3)> The degree of the polynomials, if the output distortion model is RPC.

--camera-to-ground-dist <double (default: 0)> The distance from the camera to the ground, in me-
ters. This is necessary to convert an optical bar model to pinhole.
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--image-size <”int int” (default: “”)> Image width and height, specified as two numbers in quotes
and separated by a space, unless the input image file is provided.

13.14 datum_convert

This tool is used to convert a DEM from one datum to another. For example, a UTM zone 10 DEM with an NAD27
datum can be converted to a UTM zone 10 DEM with a WGS84 datum. This tool does not convert between pro-
jections, another program such as gdalwarp (included with ASP) or ASP’s dem_mosaic should be used for that.
datum_convert performs horizontal conversion; vertical conversion is only provided for the limited case of conver-
sions between datums defined only by the +a and +b terms (such as our D_MARS and MOLA datums). The underlying
Proj.4 library does have some support for vertical datums (see https://github.com/OSGeo/proj.4/wiki/VerticalDatums)
so a motivated user may be able to apply them successfully. If you do, let us know what steps you took so we can
add them to the manual! ASP ships with some vertical datum grid files in the ASP/share/proj folder but more can be
found on the Internet. Whenever you perform datum conversions be careful; the Proj.4 library tends to fail silently by
performing an identity transform on the input data. If your output data exactly matches your input data this means that
something has probably gone wrong.

The tool will try to automatically find datum information from the input file but the input datum can be manually
specified if the information in the file is missing or incorrect. Be aware that if the --keep-bounds option is not set
there may be noticeable changes in the image data just from re-interpolating to the new projected space grid. In the
case of sparsely sampled input images this effect can be much larger than the changes resulting from the actual datum
transformation.

Intuitively, the input and output DEMs should correspond to the same point cloud in 3D space up to the interpolation
errors required to perform the conversion. In practice datum conversion is a complex task which may need to ac-
count for things like shifting tectonic plates over time. ASP’s implementation is based on Proj.4 and the HTDPGrids
extension (https://github.com/OSGeo/proj.4/wiki/HTDPGrids). Datum support in Proj.4 is not robust even with the
extension so if it is critical that you have a very accurate conversion we recommend that you attempt to verify results
obtained using datum_convert with another conversion method.

This tool requires the GDAL and NumPy Python packages to run. One way to get these is to install the ASP Python
tools, described at the end of Section 4.4, and by setting ASP_PYTHON_MODULES_PATH as mentioned in that
section.

Usage:

datum_convert [options] <input dem> <output dem>

Command-line options for datum_convert:

--help Display the help message.

--show-all-datums Print out all the datum names which are recognized.

--output-datum <string> The datum to convert to. Supported options include: WGS_1984, NAD83,
WGS72, and NAD27.

--input-datum <string> Override the datum of the input file. Supports the same options as
--output-datum.

--output-datum-year <float (default: 2000.0)> Specify the exact date of the output datum in floating
point format ex: 2003.4.

--input-datum-year <float (default: 2000.0)> As --output-datum-year, but for the input file.

--t_srs <proj string> Specify the output datum via the PROJ.4 string.

--keep-bounds Don’t recompute the projected space boundary. This can help reduce changes
caused by interpolation.
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--nodata-value The value of no-data pixels, unless specified in the DEM.

--double Create float64 instead of float32 output files.

--show-grid-calc Don’t hide the shift grid creation output.

--debug-mode Print the converted lon/lat/alt coordinates for each pixel. Only useful for investi-
gating exact change that is happening.

--grid-size-lon Specify the number of columns in the grid shift file.

--grid-size-lat Specify the number of rows in the grid shift file.

--keep-working-files Don’t delete intermediate files.

13.15 dem_geoid

This tool takes as input a DEM whose height values are relative to the datum ellipsoid, and adjusts those values to be
relative to the equipotential surface of the planet (geoid on Earth, and areoid on Mars). The program can also apply
the reverse of this adjustment. The adjustment simply subtracts from the DEM height the geoid height (correcting, if
need be, for differences in dimensions between the DEM and geoid datum ellipsoids).

Three geoids and one areoid are supported. The Earth geoids are: EGM96 and EGM2008, relative to the
WGS84 datum ellipsoid (http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html, http://earth-info.
nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html) and NAVD88, relative to the NAD83 datum ellip-
soid (http://www.ngs.noaa.gov/GEOID/GEOID09/).

The Mars areoid is MOLA MEGDR (http://geo.pds.nasa.gov/missions/mgs/megdr.html). When importing it into ASP,
we adjusted the areoid height values to be relative to the IAU reference spheroid for Mars of radius 3,396,190 m.
The areoid at that source was relative to the Mars radius of 3,396,000 m. Yet dem_geoid can adjust correctly Mars
DEMs created in respect to either spheroid.

Example: Go from a DEM in respect to the WGS84 datum to one in respect to the EGM2008 geoid:

dem_geoid input-DEM.tif --geoid egm2008

This program will write a new image file with the suffix -adj.tif.

Command-line options for dem_geoid:

-h, --help Display the help message.

--nodata-value <float(default: -32768)> The value of no-data pixels, unless specified in the DEM.

--geoid <name (default: EGM96)> Specify the geoid to use for the given datum. For WGS84 use
EGM96 or EGM2008. For Mars use MOLA or leave blank. For NAD83 use
NAVD88 or leave blank. When not specified it will be auto-detected.

-o, --output-prefix <name> Specify the output file prefix.

--double Output using double precision (64 bit) instead of float (32 bit).

--reverse-adjustment Go from DEM relative to the geoid/areoid to DEM relative to the datum ellip-
soid.
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13.16 dem_mosaic

The program dem_mosaic takes as input a list of DEM files, optionally erodes pixels at the DEM boundaries, and
creates a mosaic. By default, it blends the DEMs where they overlap.

Usage:

dem_mosaic [options] <dem files or -l dem_files_list.txt> \
-o output_file_prefix

The input DEMs can either be set on the command line, or if too many, they can be listed in a text file (one per line)
and that file can be passed to the tool.

The output mosaic is written as non-overlapping tiles with desired tile size, with the size set either in pixels or in
georeferenced (projected) units. The default tile size is large enough that normally the entire mosaic is saved as one
tile, in the format output_file_prefix-tile-0.tif. Alternatively, one can pass to the -o option an output file name ending
in .tif. Then the mosaic will be written with this exact name, without appending tile-0.tif. (This will fail if the tool
decides there is a need for more than one tile.)

Individual tiles can be saved via the --tile-index option (the tool displays the total number of tiles when it is
being run). As such, separate processes can be invoked for individual tiles for increased robustness and perhaps speed.

The output mosaic tiles will be named <output prefix>-tile-<tile index>.tif, where <output prefix> is an arbitrary string.
For example, if it is set to results/output, all the tiles will be in the results directory.

By the default, the output mosaicked DEM will use the same grid size and projection as the first input DEM. These
can be changed via the --tr and --t_srs options.

The default behavior is to blend the DEMs everywhere. If the option --priority-blending-length
integer is invoked, the blending behavior will be different. At any location, the pixel value of the DEM earli-
est in the list present at this location will be kept, unless closer to the boundary of that DEM than this blending length
(measured in input DEM pixels), only in the latter case blending will happen. This mode is useful when blending
several high-resolution “foreground” DEMs covering small regions with larger “background” DEMs covering a larger
extent. Then, the pixels from the high-resolution DEMs are more desirable, yet at their boundary these DEMs should
blend into the background.

To obtain smoother blending when the input DEMs are quite different at the boundary, one can increase
--weights-blur-sigma and --weights-exponent. The latter will result in weights growing slower ear-
lier and faster later. Some experimentation may be necessary, helped for example by examining the weights used in
blending; they can be written out with --save-dem-weight integer.

Instead of blending, dem_mosaic can compute the image of first, last, minimum, maximum, mean, standard de-
viation, median, and count of all encountered valid DEM heights at output grid points. For the “first” and “last”
operations, the order in which DEMs were passed in is used. With any of these options, the tile names will be adjusted
accordingly. It is important to note that with these options blending will not happen, since it is explicitly requested
that particular values of the input DEMs be used.

If the number of input DEMs is very large, the tool can fail as the operating system may refuse to load all DEMs. In
that case, it is suggested to use the parameter --tile-size to break up the output DEM into several large tiles, and
to invoke the tool for each of the output tiles with the option --tile-index. Later, dem_mosaic can be invoked
again to merge these tiles into a single DEM.

If the DEMs have reasonably regular boundaries and no holes, smoother blending may be obtained by using
--use-centerline-weights.

Example 1. Erode 3 pixels from input DEMs and blend them:

dem_mosaic --erode-length 3 dem1.tif dem2.tif -o blended
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Example 2. Read the DEMs from a list, and apply priority blending:

echo dem1.tif dem2.tif > image_list.txt
dem_mosaic -l image_list.txt --priority-blending-length 14 \

-o priority_blended

Example 3. Find the mean DEM, no blending is used:

dem_mosaic -l image_list.txt --mean -o mosaic

Example 4. Write with the exact output name, without using the tile-0.tif extension:

dem_mosaic dem1.tif dem2.tif -o blended.tif

Command-line options for dem_mosaic:

-h, --help Display the help message.

-l, --dem-list-file <filename> Text file listing the DEM files to mosaic, one per line.

-o, --output-prefix <string> Specify the output prefix. One or more tiles will be written with this
prefix. Alternatively, an exact output file can be specified, with a .tif extension.

--tile-size <integer (default: 1000000)> The maximum size of output DEM tile files to write, in pix-
els.

--tile-index <integer> The index of the tile to save (starting from zero). When this program is invoked,
it will print out how many tiles are there. Default: save all tiles.

--tile-list <string> List of tile indices (in quotes) to save. A tile index starts from 0.

--erode-length <number-of-pixels (default: 0)> Erode input DEMs by this many pixels at boundary
before mosaicking them.

--priority-blending-length <number-of-pixels (default: 0)> If positive, keep unmodified values
from the earliest available DEM except a band this wide measured in pixels in-
ward of its boundary where blending with subsequent DEMs will happen.

--hole-fill-length <number-of-pixels (default: 0)> Maximum dimensions of a hole in the output
DEM to fill in, in pixels.

--tr <resolution> Output DEM resolution in target georeferenced units per pixel. Default: use the
same resolution as the first DEM to be mosaicked.

--t_srs <proj4-string> Specify the output projection (PROJ.4 string). Default: use the one from the
first DEM to be mosaicked.

--t_projwin <xmin ymin xmax ymax> Limit the mosaic to this region, with the corners given in geo-
referenced coordinates (xmin ymin xmax ymax). Max is exclusive.

--first Keep the first encountered DEM value (in the input order).

--last Keep the last encountered DEM value (in the input order).

--min Keep the smallest encountered DEM value.

--max Keep the largest encountered DEM value.

--mean Find the mean DEM value.

--stddev Find the standard deviation of DEM values.

--median Find the median DEM value (this can be memory-intensive, fewer threads are
suggested).
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--nmad Find the normalized median absolute deviation DEM value (this can be memory-
intensive, fewer threads are suggested).

--count Each pixel is set to the number of valid DEM heights at that pixel.

--georef-tile-size <projected-units> Set the tile size in georeferenced (projected) units (e.g., degrees
or meters).

--output-nodata-value <double> No-data value to use on output. Default: use the one from the first
DEM to be mosaicked.

--ot <type (default: Float32)> Output data type. Supported types: Byte, UInt16, Int16, UInt32, Int32,
Float32. If the output type is a kind of integer, values are rounded and then
clamped to the limits of that type.

--weights-blur-sigma <integer (default: 5)> The standard deviation of the Gaussian used to blur the
weights. Higher value results in smoother weights and blending. Set to 0 to not
use blurring.

--weights-exponent <float (default: 2.0)> The weights used to blend the DEMs should increase away
from the boundary as a power with this exponent. Higher values will result in
smoother but faster-growing weights.

--use-centerline-weights Compute weights based on a DEM centerline algorithm. Produces smoother
weights if the input DEMs don’t have holes or complicated boundary.

--dem-blur-sigma <integer (default: 0)> Blur the final DEM using a Gaussian with this value of
sigma. Default: No blur.

--extra-crop-length <number-of-pixels (default: 200)> Crop the DEMs this far from the current tile
(measured in pixels) before blending them (a small value may result in artifacts).

--nodata-threshold <float> Values no larger than this number will be interpreted as no-data.

--force-projwin Make the output mosaic fill precisely the specified projwin, by padding it if nec-
essary and aligning the output grid to the region.

--save-dem-weight <integer> Save the weight image that tracks how much the input DEM with given
index contributed to the output mosaic at each pixel (smallest index is 0).

--save-index-map For each output pixel, save the index of the input DEM it came from (applicable
only for --first, --last, --min, --max, --median, and --nmad). A
text file with the index assigned to each input DEM is saved as well.

--threads <integer (default: 4)> Set the number of threads to use.

13.17 dg_mosaic

This tool can be used when processing Digital Globe images (Section 4). A Digital Globe satellite may take a picture,
and then split it into several images and corresponding camera XML files. dg_mosaic will mosaic these images into
a single file, and create the appropriate combined camera XML file.

Digital Globe camera files contain, in addition to the original camera models, their RPC approximations (Section
10.14). dg_mosaic outputs both types of combined models. The combined RPC model can be used to map-project
the mosaicked images with the goal of computing stereo from them (Section 5.1.7).

The tool needs to be applied twice, for both the left and right image sets.

dg_mosaic can also reduce the image resolution while creating the mosaics (with the camera files modified accord-
ingly).
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Some older (2009 or earlier) Digital Globe images may exhibit seams upon mosaicking due to inconsistent image and
camera information. The --fix-seams switch can be used to rectify this problem. Its effect should be minimal if
such inconsistencies are not present.

Command-line options for dg_mosaic:

-h, --help Display the help message.

--target-resolution Choose the output resolution in meters per pixel on the ground (note that a coarse
resolution may result in aliasing).

--reduce-percent <integer (default: 100)> Render a reduced resolution image and XML based on
this percentage. This can result in aliasing artifacts.

--skip-rpc-gen Skip RPC model generation.

--rpc-penalty-weight <float (default: 0.1)> The weight to use to penalize higher order RPC coeffi-
cients when generating the combined RPC model. Higher penalty weight results
in smaller such coefficients.

--output-prefix <name> The prefix for the output .tif and .xml files.

--band integer Which band to use (for multi-spectral images).

--input-nodata-value <float> Nodata value to use on input; input pixel values less than or equal to
this are considered invalid.

--output-nodata-value <float> Nodata value to use on output.

--ot <Byte|UInt16|Int16|UInt32|Int32|Float32 (default: Float32)> Output data type. If the output
type is a kind of integer, values are rounded and then clamped to the limits of that
type.

--fix-seams Fix seams in the output mosaic due to inconsistencies between image and camera
data using interest point matching.

--ignore-inconsistencies Ignore the fact that some of the files to be mosaicked have inconsistent
EPH/ATT values. Do this at your own risk.

--preview Render a small 8 bit png of the input for preview.

-n, --dry-run Make calculations, but just print out the commands.

13.18 disparitydebug

The disparitydebug program produces output images for debugging disparity images created from stereo.
The stereo tool produces several different versions of the disparity map; the most important ending with extensions
*-D.tif and *-F.tif. (see Section 16 for more information.) These raw disparity map files can be useful for
debugging because they contain raw disparity values as measured by the correlator; however they cannot be directly
visualized or opened in a conventional image browser. The disparitydebug tool converts a single disparity map
file into two normalized TIFF image files (*-H.tif and *-V.tif, containing the horizontal and vertical, or line
and sample, components of disparity, respectively) that can be viewed using any image display program.

The disparitydebug program will also print out the range of disparity values in a disparity map, that can serve as
useful summary statistics when tuning the search range settings in the stereo.default file.

If the input images are map-projected (georeferenced), the outputs of disparitydebug will also be georeferenced.

Command-line options for disparitydebug:

-h, --help Display the help message.
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--input-file <filename> Explicitly specify the input file.

-o, --output-prefix <filename> Specify the output file prefix.

-t, --output-filetype <type (default: tif)> Specify the output file type.

--float-pixels Save the resulting debug images as 32 bit floating point files (if supported by the
selected file type).

13.19 GDAL Tools

ASP distributes in the bin directory the following GDAL tools:

• gdal_rasterize

• gdal_translate

• gdalbuildvrt

• gdaldem

• gdalinfo

• gdaltransform

• gdalwarp

These executables are compiled with JPEG2000 and BigTIFF support, and can handle NTF images in addition to most
image formats. They can be used to see image statistics, crop and scale images, build virtual mosaics, reproject DEMs,
etc. Detailed documentation is available on the GDAL web site, at http://www.gdal.org/.

13.20 geodiff

The geodiff program takes as input two DEMs (or a DEM and a CSV file, with the latter in the same format as
used for pc_align and point2dem), and subtracts the second from the first. The grid used is the one from the first
DEM, so the second one is interpolated into it usign bilinear interpolation (when one file is a CSV, the grid from the
other one, the DEM, is used). The tool can also take the absolute difference of the two DEMs.

It is important to note that the tool is very sensitive to the order of the two DEMs, due to the fact that the grid comes
from the first one. Ideally the grid of the first DEM would be denser than the one of the second.

Usage:

> geodiff [options] <dem1> <dem2> [ -o output_file_prefix ]

Command-line options for geodiff:

-h, --help Display the help message.

-o, --output-prefix <filename> Specify the output prefix.

--absolute Output the absolute difference as opposed to just the difference.

--float Output using float (32 bit) instead of using doubles (64 bit).

--csv-format <string> Specify the format of input CSV files as a list of entries col-
umn_index:column_type (indices start from 1). Examples: 1:x 2:y 3:z
(a Cartesian coordinate system with origin at planet center is assumed, with
the units being in meters), 5:lon 6:lat 7:radius_m (longitude and lat-
itude are in degrees, the radius is measured in meters from planet center),
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3:lat 2:lon 1:height_above_datum, 1:easting 2:northing
3:height_above_datum (need to set --csv-proj4; the height above da-
tum is in meters). Can also use radius_km for column_type, when it is again
measured from planet center.

--csv-proj4 <proj string> The PROJ.4 string to use to interpret the entries in input CSV files, if those
files contain Easting and Northing fields. If not specified, it will be borrowed
from the DEM.

--nodata-value <float (default: -32768)> The no-data value to use, unless present in the DEM geo-
headers.

--threads <integer (default: 0)> Set the number of threads to use. 0 means use as many threads as
there are cores.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tif-comp <None|LZW|Deflate|Packbits> TIFF compression method.

13.21 hiedr2mosaic.py

Assemble a collection of HiRISE EDR files into a single image. This runs the sequence of ISIS preprocessing
commands, followed by hijitreg, to assemble the input images into a single output image. You can either down-
load the input files yourself and pass them all in or specify a download folder and pass in only a URL such as
http://hirise-pds.lpl.arizona.edu/PDS/EDR/ESP/ORB_029400_029499/ESP_029421_2300/. If you use a URL, the
program will attempt to download all of the HiRISE images found at that location and then run the processing script.
See the “Mars Reconnaissance Orbiter HiRISE” section in the examples chapter for a more detailed explanation.

Usage:

hiedr2mosaic.py [options] <input files OR a URL>

Command-line options for hiedr2mosaic.py:

--manual Display the help message.

-m, --match The CCD number passed as the match argument to noproj (default 5).

--stop-at-no-proj Stops processing after the noproj steps are complete.

--resume-at-no-proj Restarts processing using the results from --stop-at-no-proj.

--download-folder Download input files to this folder. Must pass in a URL instead of files.

-t, --threads Specify the number of threads to use.

-k, --keep Keep all intermediate files.

13.22 hillshade

The hillshade tool reads in a DEM and outputs an image of that DEM as though it were a three-dimensional
surface, with every pixel shaded as though it were illuminated by a light from a specified location.

Command-line options for hillshade:

--help Display a help message.

--input-file <filename> Explicitly specify the input file.
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-o, --output-file <filename> Specify the output file.

--align-to-georef Azimuth is relative to geographic East, not +x in the image.

-a, --azimuth <number-in-degrees (default: 300)> Sets the direction that the light source is coming
from (in degrees). Zero degrees is to the right, with positive degrees counter-
clockwise.

-e, --elevation <number-in-degrees (default: 20)> Set the elevation of the light source (in degrees).

-s, --scale <arg (default: 0)> Set the scale of a pixel (in the same units as the DTM height values).

--nodata-value <arg> Remap the DEM default value to the min altitude value.

--blur <arg> Pre-blur the DEM with the specified sigma.

13.23 hsv_merge

Replaces the intensity information in an RGB image with the provided grayscale image by temporarily converting to
HSV. Both input image must be the same size.

Mimics hsv_merge.py by Frank Warmerdam and Trent Hare. Use it to combine results from gdaldem.

Usage:

hsv_merge [options] <rgb_image> <gray_image>

Command-line options for hsv_merge:

--help Display the help message.

-o, --output-file <filepath> Specify the output file. Required!

13.24 icebridge_kmz_to_csv

A simple tool for use with data from the NASA IceBridge program. Google Earth compatible .kmz files are available at
http://asapdata.arc.nasa.gov/dms/missions.html which display the aircraft position at the point when each DMS frame
image was captured. This tool exports those positions into a csv file which can be passed into bundle_adjust
using the following parameters:

--camera-positions ../camera_positions.csv --csv-format "1:file 2:lon 3:lat 4:height_
↪→above_datum"

This may be useful in conjunction with the camera_solve tool to allow conversion of camera positions from local
to global coordinates.

Usage:

> icebridge_kmz_to_csv <input kmz file> <output csv file>
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13.25 image2qtree

image2qtree turns a georeferenced image (or images) into a quadtree with geographical metadata. For example, it
can output a kml file for viewing in Google Earth.

Command-line options for image2qtree:

--help Display a help message.

-o, --output-name <directory-name> Specify the base output directory.

-q, --quiet Quiet output.

-v, --verbose Verbose output.

--cache <number-of-MB (default: 1024)> Cache size, in megabytes.

--force-wgs84 Use WGS84 as the input images’ geographic coordinate systems, even if they’re
not (old behavior).

--pixel-scale <factor (default: 1)> Scale factor to apply to pixels.

--pixel-offset <offset (default: 0)> Offset to apply to pixels.

--normalize Normalize input images so that their full dynamic range falls in between [0,255].

-m, --output-metadata <kmltms|uniview|gmap|celestia|none (default: none)> Specify the output
metadata type.

--file-type <type (default: png)> Output file type.

--channel-type <uint8|uint16|int16|float (default: uint8)> Output (and input) channel type.

--module-name <name (default: marsds)> The module where the output will be placed. Ex: marsds
for Uniview, or Sol/Mars for Celestia.

--terrain Outputs image files suitable for a Uniview terrain view. Implies output format as
PNG, channel type uint16. Uniview only.

--jpeg-quality <factor (default: 0.75)> JPEG quality factor (0.0 to 1.0).

--png-compression <level (default: 3)> PNG compression level (0 to 9).

--palette-file <filename> Apply a palette from the given file.

--palette-scale <factor> Apply a scale factor before applying the palette.

--palette-offset <value> Apply an offset before applying the palette.

--tile-size <number-of-pixels (default: 256)> Tile size, in pixels.

--max-lod-pixels <number-of-pixels (default: 1024)> Max LoD in pixels, or -1 for none (kml only).

--draw-order-offset <value (default: 0)> Offset for the <drawOrder> tag for this overlay (kml
only).

--composite-multiband Composite images using multi-band blending.

--aspect-ratio <ratio (default: 1)> Pixel aspect ratio (for polar overlays; should be a power of two).

--north <latitude-in-degrees> The northernmost latitude in degrees.

--south <latitude-in-degrees> The southernmost latitude in degrees.

--east <longitude-in-degrees> The easternmost longitude in degrees.

--west <longitude-in-degrees> The westernmost longitude in degrees.
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--sinusoidal Assume a sinusoidal projection.

--mercator Assume a Mercator projection.

--transverse-mercator Assume a transverse Mercator projection.

--orthographic Assume an orthographic projection.

--stereographic Assume a stereographic projection.

--lambert-azimuthal Assume a Lambert azimuthal projection.

--lambert-conformal-conic Assume a Lambert Conformal Conic projection.

--utm <zone> Assume UTM projection with the given zone.

--proj-lat <latitude> The center of projection latitude (if applicable).

--proj-lon <longitude> The center of projection longitude (if applicable).

--proj-scale <scale> The projection scale (if applicable).

--std-parallel1 <latitude> Standard parallels for Lambert Conformal Conic projection.

--std-parallel2 <latitude> Standard parallels for Lambert Conformal Conic projection.

--nudge-x <arg> Nudge the image, in projected coordinates.

--nudge-y <arg> Nudge the image, in projected coordinates.

13.26 image_calc

This tool can be used to perform simple, per-pixel arithmetic on one or more input images. An arithmetic operation
specified on the command line is parsed and applied to each pixel, then the result is written to disk. The tool supports
multiple input images but each must be the same size and data type. Input images are restricted to one channel.

The following symbols are allowed in the arithmetic string: +, -, *, /, (), min(), max(), pow(), abs(), sign(), and var_N
where N is the index of one of the input images (N≥0). The tool also supports certain conditional operations: lt, gt,
lte, gte, eq (<, >, <=, >=, == respectively). These must be used in a format like “lt(var_0, 0.003, var_1, 0)”, which
translates to “if var_0 < 0.003 then var_1 else 0”. An example arithmetic string is: “-abs(var_0) + min(58, var_1,
var_2) / 2”. The tool respects the normal PEMDAS order of operations except that it parses equal priority operations
from right to left, not the expected left to right. Parentheses can be used to enforce any preferred order of evaluation.

Usage:

image_calc [options] -c <arithmetic formula> <inputs> -o <output>

Example:

image_calc -c "pow(var_0/3.0, 1.1)" input_image.tif -o output_image.tif -d float32

Command-line options for image_calc:

--help Display the help message.

-c, --calc The arithmetic string in quotes (required).

-d, --output-data-type <type (default: float64)> The data type of the output file.

--input-nodata-value <arg> Set an override nodata value for the input images.

--output-nodata-value Manually specify a nodata value for the output image (default is data type
min).
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-o, --output-file <name> Specify the output file instead of using a default.

--mo <string> Write metadata to the output file. Provide as a string in quotes if more than
one item, separated by a space, such as 'VAR1=VALUE1 VAR2=VALUE2'.
Neither the variable names nor the values should contain spaces.

13.27 image_mosaic

The program image_mosaic aligns multiple input images into a single output image. Currently it only supports a
horizontal sequence of images such as scanned Corona images. An example of using this tool is in Section 10.19.

Usage:

image_mosaic [options] <images> -o output_file_path [options]

Command-line options for image_mosaic:

--t_orientation <horizontal> Specify the image layout. Currently only supports horizontal.

--reverse Mosaic the images in reverse order.

--rotate After mosaicking, rotate the image by 180 degrees around its center.

--rotate-90 After mosaicking, rotate the image by 90 degrees clockwise around its center.

--rotate-90-ccw After mosaicking, rotate the image by 90 degrees counter-clockwise around its
center.

--use-affine-transform Solve for full affine transforms between segments instead of a simpler ro-
tate+translate transform.

-o, --output-image <string> Specify the output file path. Required.

--overlap-width <number-of-pixels (default: 2000)> The width of the expected overlap region in the
images, in pixels.

--blend-radius <number-of-pixels> The width in pixels over which blending is performed. Default is
calculated based on the overlap width.

--band <integer (default: 0)> Specify a band to use for multi-channel images.

--ot <type (default: Float32)> Output data type. Supported types: Byte, UInt16, Int16, UInt32, Int32,
Float32. If the output type is a kind of integer, values are rounded and then
clamped to the limits of that type.

--input-nodata-value <double> Override the input nodata value.

--output-nodata-value double Specify the output nodata value.

--ip-per-tile integer How many interest points to detect in each 10242 image tile (default: automatic
determination).

--output-prefix <string> If specified, save here the interest point matches used in mosaicking.

--tile-size <integer(=256, 256)> The size of image tiles used for processing. The amount of image
blending is limited by the tile size, so this will be increased automatically if it is
too small for the overlap width.

-h, --help Display the help message.
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13.28 ipfind

The ipfind tool detects interest points (IPs) in images and writes them out to .vwip files. ASP is able to read these
files to recover the IPs.

This tool is useful in testing out different IP detection settings and visualizing them (using the option
--debug-image).

One can pass multiple input images to the tool and they will be processed one after another.

This program works in conjunction with ipmatch (Section 13.29) to match interest points across images.

Usage:

ipfind [options] <images>

Command-line options for ipfind:

--interest-operator <sift|orb|OBALoG|LoG|Harris|IAGD (default: sift)> Choose an interest point
detector.

--descriptor-generator <sift|orb|sgrad|sgrad2|patch|pca (default: sift)> Choose a descriptor gener-
ator. Some descriptors work only with certain interest point operators.

--ip-per-image <integer> Set the maximum number of IP to find in the whole image. If not specified,
use instead the value of --ip-per-tile.

-t, --tile-size <integer (default: 256)> The tile size for processing interest points. Useful when work-
ing with large images.

--ip-per-tile <integer (default: 250)> Set the maximum number of IP to find in each tile.

-g, --gain <float (default: 1)> Increasing this number will increase the gain at which interest points
are detected.

--single-scale Turn off scale-invariant interest point detection. This option only searches for
interest points in the first octave of the scale space. Harris and LoG only.

--no-orientation Turn off rotational invariance.

--normalize Normalize the input. Use for images that have non-standard values such as ISIS
cube files.

--per-tile-normalize Individually normalize each processing tile.

--nodata-radius <integer (default: 1)> Don’t detect IP within this many pixels of image borders or
nodata.

--output-folder <filepath> Write output files to this location.

--num-threads <integer (default: 0)> Set the number of threads for interest point detection. If set to
0 (default), use the visionworkbench default number of threads.

-h, --help Display this help message.

-d, --debug-image <0|1|2 (default: 0)> Write out a low-resolution or full-resolution debug image with
interest points on it if the value of this flag is respectively 1 or 2. The default (0)
is to do nothing.

--print-ip <integer (default: 0)> Print information for this many detected IP.

--lowe Save the interest points in an ASCII data format that is compatible with the Lowe-
SIFT toolchain.
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13.29 ipmatch

The ipmatch reads in interest points (IPs) from .vwip files and attempts to match them, writing out .match files
containing these results. Other ASP tools can read in these files. ipmatch also produces debug images which can
be useful. Note that this tool does not implement many of the IP matching steps that are used in stereo_pprc and
stereo_corr since it does not use any sensor model information.

If more than two image/vwip sets are passed in, each possible combination of images will be matched.

Usage:

ipmatch [options] <image 1> <vwip file 1> <image 2> <vwip file 2> ...

Command-line options for ipmatch:

-h, --help Display the help message.

--output-prefix <filepath> Write output files using this prefix.

--matcher-threshold <float (default: 0.6)> Threshold for the separation between closest and next
closest interest points.

--non-kdtree Use a non-KDTree version of the matching algorithm.

--distance-metric <L2|Hamming (default: L2)> Distance metric to use. Hamming should only be
used for binary types like ORB.

--ransac-constraint <similarity|homography|fundamental|none> RANSAC constraint type.

--inlier-threshold <float (default: 10)> RANSAC inlier threshold.

--ransac-iterations <integer (default: 100)> Number of RANSAC iterations.

-d, --debug-image Set to write out debug images.

13.30 lronac2mosaic.py

This tool takes in two LRONAC files (M*LE.IMG and M*RE.IMG) and produces a single noproj mosaic composed of
the two inputs. It performs the following operations in this process: lronac2isis, lronaccal, lronacecho,
spiceinit, noproj, and handmos. The offsets used in handmos are calculated using an ASP internal tool called
lronacjitreg and is similar in functionality to the ISIS command hijitreg. Offsets need to be calculated via
feature measurements in image to correct for imperfections in camera pointing. The angle between LE and RE optics
changes slightly with spacecraft temperature.

Optionally, lronac2mosiac.py can be given many IMG files all at once. The tool will then look at image names
to determine which should be paired and mosaicked. The tool will also spawn multiple processes of ISIS commands
were possible to finish the task faster. The max number of simultaneous processes is limited by the --threads
option.

Usage:

lronac2mosaic.py [options] <IMG file 1> <IMG file 2>

Command-line options for lronac2mosaic.py:

--manual Display the help message.

-o, --output-dir <name> Set the output folder (default is input folder).

--stop-at-no-proj Stops processing after the noproj steps are complete.
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--resume-at-no-proj Restarts processing using the results from stop-at-no-proj.

-t, --threads Specify the number of threads to use.

-k, --keep Keep all intermediate files.

13.31 lvis2kml

A simple tool for use with LVIS (Land, Vegetation, and Ice Sensor) lidar data from the NASA IceBridge program.
Generates a Google Earth compatible .kml files from either an LVIS data file (.TXT extension) or an LVIS boundary
file (.xml extension). Using this tool makes it easy to visualize what region a given LVIS file covers and what the
shape of its data looks like. If the output path is not passed to the tool it will generate an output path by appending
“.kml” to the input path. This tool requires the simplekml Python package to run. One way to get this is to install the
ASP Python tools, described at the end of Section 4.4.

Usage:

> lvis2kml [options] <input path> [output path]

Command-line options for lvis2kml:

-h, --help Display this help message.

--name <string> Assign a name to the KML file.

--color <red|green|blue> Draw plots in the named color.

--skip <int (default: 1)> When loading a data file, plot only every N-th point. Has no effect on bound-
ary files.

13.32 mapproject

The tool mapproject is used to orthorectify (map-project) a camera image onto a DEM or datum. (ASP is able to
use map-projected images to run stereo, see Section 5.1.7.)

The mapproject program can be run using multiple processes and can be distributed over multiple machines. This
is particularly useful for ISIS cameras, as in that case any single process must use only one thread due to the limitations
of ISIS. The tool splits the image up into tiles, farms the tiles out to sub-processes, and then merges the tiles into the
requested output image. If your image is small, smaller tiles can be used as well to start more simultaneous processes
(parameter --tile-size).

Examples:

Map-project a .cub file (it has both image and camera information):

mapproject -t isis DEM.tif image.cub output.tif --ppd 256

Map-project an image file with associated .xml camera file:

mapproject -t rpc DEM.tif image.tif image.xml output.tif --mpp 20

Mapproject onto a datum rather than a DEM:

mapproject WGS84 image.tif image.xml output.tif --mpp 10
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Fig. 13.1: Example of KML visualizations produced with lvis2kml. The output from both the boundary file (red)
and the data file (green) with a point skip of 500 are shown in this image. The color saturation of data points is scaled
with the elevation such that the points in the file with the least elevation show up as white and the highest points show
up as the specified color.
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The first argument can either be a path to a DEM file or the name of a standard datum. Valid datum names include
WGS84, NAD83, NAD27, D_MOON, D_MARS, and MOLA.

It is very important to pick a good value for the grid size parameter, given by --mpp, --ppd, or --tr. Ideally it
should be very close to the known image resolution as measured on the ground (in degree or meter units, depending
on the projection).

If processing DigitalGlobe images, both the rigorous DG model (-t dg) and its RPC approximation (-t rpc) from
the XML metadata file can be used for map projection. In practice, the latter is recommended for most applications.
The former is slightly more accurate, but much slower.

Usage:

mapproject [options] <dem> <camera-image> <camera-model> <output-image>

Command-line options for mapproject:

-h, --help Display the help message.

--nodata-value <float(default: -32768)> No-data value to use unless specified in the input image.

--t_srs <proj4 string> Specify the output projection (PROJ.4 string). If not provided, use the one from
the DEM.

--mpp <float> Set the output file resolution in meters per pixel.

--ppd <float> Set the output file resolution in pixels per degree.

--tr <float> Set the output file resolution in target georeferenced units per pixel.

--datum-offset <float> When projecting to a datum instead of a DEM, add this elevation offset to the
datum.

-t, --session-type <pinhole|isis|rpc> Select the stereo session type to use for processing. Choose rpc
if it is desired to later do stereo with the dg session.

--t_projwin <xmin ymin xmax ymax> Limit the map-projected image to this region, with the corners
given in georeferenced coordinates (xmin ymin xmax ymax). Max is exclusive.

--t_pixelwin <xmin ymin xmax ymax> Limit the map-projected image to this region, with the cor-
ners given in pixels (xmin ymin xmax ymax). Max is exclusive.

--bundle-adjust-prefix <name> Use the camera adjustment obtained by previously running bun-
dle_adjust with this output prefix.

--ot <type (default: Float32)> Output data type, when the input is single channel. Supported types:
Byte, UInt16, Int16, UInt32, Int32, Float32. If the output type is a kind of integer,
values are rounded and then clamped to the limits of that type. This option will
be ignored for multi-channel images, when the output type is set to be the same
as the input type.

--nearest-neighbor Use nearest neighbor interpolation instead of bicubic interpolation.

--mo <string> Write metadata to the output file. Provide as a string in quotes if more than one
item, separated by a space, such as VAR1=VALUE1 VAR2=VALUE2. Neither
the variable names nor the values should contain spaces.

--num-processes <integer> Number of parallel processes to use (default program chooses).

--nodes-list List of available computing nodes.

--tile-size Size of square tiles to break processing up into.

--suppress-output Suppress output from sub-processes.
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--threads <int (default: 0)> Select the number of processors (threads) to use.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tif-compress <None|LZW|Deflate|Packbits> TIFF compression method.

13.33 n_align

This tool can be used to jointly align a set of two or more point clouds, hence it extends the functionality of pc_align
(Section 13.39). It implements the ICP flavor from [TBC10], more exactly, the MATLAB algorithm at

https://searchcode.com/file/13619767/Code/matlab/GlobalProcrustesICP/globalProcrustes.m

It is hoped that joint alignment will give less biased results than pairwise alignment for the clouds.

Usage:

n_align <cloud files> -o <output prefix>

This tool supports the same types of data on input and output as pc_align.

Even for two clouds this algorithm is not the same as the ones that are part of pc_align. This algorithm is expected
to be more robust to outliers than the regular ICP in pc_align since it uses a cross-check. Yet, it may not handle a
large translation difference between the clouds as well. In that case, given a set of clouds, one can first use pc_align
to align all other clouds to the first one, then invoke this algorithm for joint alignment while passing the obtained
alignment transforms as an argument to this tool, to be used as initial guesses. The option to use for this, as shown
below for simplicity for three clouds, is:

--initial-transforms 'identity.txt run_12/run-transform.txt run_13/run-transform.txt'

where the file identity.txt contains the 4 × 4 identity matrix (the transform from the first cloud to itself), and
run_12/run is the output prefix for pc_align when invoked on the first and second clouds, etc. The final trans-
forms output by this tool will incorporate the initial guesses.

This tool should be less sensitive than pc_align to the order of the clouds since any two of them are compared
against each other. The number of iterations and number of input points used will dramatically affect its performance,
and likely the accuracy. Cropping all clouds to the same region is likely to to improve both run-time and the results.

Command-line options for n_align:

--num-iterations <arg (default: 100)> Maximum number of iterations.

--max-num-points <arg (default: 1000000)> Maximum number of (randomly picked) points from
each cloud to use.

--csv-format <string> Specify the format of input CSV files as a list of entries col-
umn_index:column_type (indices start from 1). Examples: 1:x 2:y 3:z
(a Cartesian coordinate system with origin at planet center is assumed, with
the units being in meters), 5:lon 6:lat 7:radius_m (longitude and lat-
itude are in degrees, the radius is measured in meters from planet center),
3:lat 2:lon 1:height_above_datum, 1:easting 2:northing
3:height_above_datum (need to set --csv-proj4; the height above da-
tum is in meters). Can also use radius_km for column_type, when it is again
measured from planet center.

--csv-proj4 <proj string> The PROJ.4 string to use to interpret the entries in input CSV files.

--datum <string> Use this datum for CSV files instead of auto-detecting it. Options:

• WGS_1984
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• D_MOON (1,737,400 meters)

• D_MARS (3,396,190 meters)

• MOLA (3,396,000 meters)

• NAD83

• WGS72

• NAD27

• Earth (alias for WGS_1984)

• Mars (alias for D_MARS)

• Moon (alias for D_MOON)

--semi-major-axis <arg (default: 0)> Explicitly set the datum semi-major axis in meters.

--semi-minor-axis <arg (default: 0)> Explicitly set the datum semi-minor axis in meters.

-o, --output-prefix <arg> Specify the output prefix. The computed alignment transforms and, if de-
sired, the transformed clouds, will be saved to names starting with this prefix.

--save-transformed-clouds Apply the obtained alignment transforms to the input clouds and save
them.

--initial-transforms-prefix <arg> The prefix of the transforms to be used as initial guesses. The nam-
ing convention is the same as for the transforms written on output.

--initial-transforms <arg> Specify the initial transforms as a list of files separated by spaces and in
quotes, that is, as 'trans1.txt ... trans_n.txt'.

--relative-error-tolerance <tolerance (default: 1e-10)> Stop when the change in the error divided by
the error itself is less than this.

--align-to-first-cloud Align the other clouds to the first one, rather than to their common centroid.

--verbose Print the alignment error after each iteration.

--threads <arg (default: 0)> Select the number of processors (threads) to use.

--tile-size <arg arg (default: 256 256)> Image tile size used for multi-threaded processing.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tif-compress <None|LZW|Deflate|Packbits (default: LZW)> TIFF Compression method.

-v, --version Display the version of software.

-h, --help Display this help message.

13.34 orbitviz

Produces a Google Earth KML file useful for visualizing camera positions. The input for this tool is one or more
images and camera files.

Usage:

orbitviz [options] <input images and cameras>

Command-line options for orbitviz:

-h, --help Display the help message.
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Fig. 13.2: Example of a KML visualization produced with orbitviz depicting camera locations for the Apollo 15
Metric Camera during orbit 33 of the Apollo command module.
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-o, --output <filename (default: orbit.kml)> The output kml file that will be written.

--linescan-line <integer (default: 1)> Get the camera position at this pixel line.

--linescan-sample <integer (default: 1)> Get the camera position at this pixel sample.

-s, --model-scale <float (default: 1)> Scale the size of the coordinate axes by this amount. Ex: To
scale axis sizes up to Earth size, use 3.66.

-u, --use-path-to-dae-model <fullpath> Use this dae model to represent camera location. Google
Sketch up can create these.

-r, --reference-spheroid <string (default: WGS_1984)> Use this reference spheroid (datum).

Options:

• WGS_1984

• D_MOON (1,737,400 meters)

• D_MARS (3,396,190 meters)

• MOLA (3,396,000 meters)

• NAD83

• WGS72

• NAD27

• Earth (alias for WGS_1984)

• Mars (alias for D_MARS)

• Moon (alias for D_MOON)

-t, --session-type <string> Select the stereo session type to use for processing. Options: nadirpinhole
pinhole isis dg rpc spot5 aster opticalbar csm.

--load-camera-solve Use a specialized display for showing the results of the camera_solve tool.
When using this option, only pass in the path to the camera_solve output
folder as a positional argument. Green lines drawn between the camera positions
indicate a successful interest point match between those two images.

--hide-labels Hide image names unless the camera is highlighted.

--bundle-adjust-prefix <string> Use the camera adjustment obtained by previously running bun-
dle_adjust with this output prefix.

--write-csv Write a csv file with the orbital data.

13.35 pansharp

This tool reads in a high resolution grayscale file and a low resolution RGB file and produces a high resolution RGB
file. The output image will be at the resolution of the grayscale image and will cover the region where the two images
overlap. Both images must have georeferencing information. This can either be projection information in the image
metadata or it can be a separate Worldview format XML camera file containing four ground control points (if using
the tool with Digital Globe images).

Usage:

pansharp [options] <grayscale image file> <color image file> <output image file>

Command-line options for pansharp:
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--help Display the help message.

--min-value Manually specify the bottom of the input data range.

--max-value Manually specify the top of the input data range.

--gray-xml Look for georeference data here if not present in the grayscale image.

--color-xml Look for georeference data here if not present in the RGB image.

--nodata-value The nodata value to use for the output RGB file.

13.36 parallel_bundle_adjust

The parallel_bundle_adjust program is a modification of bundle_adjust designed to distribute some of
the preprocessing steps over multiple processes and multiple computing nodes. It uses GNU Parallel to manage the
jobs in the same manner as parallel_stereo. For information on how to set up and use the node list see Section
13.38.

The parallel_bundle_adjust has three processing steps: statistics, matching, and optimization. Only
the first two steps can be done in parallel and in fact after you have run steps 0 and 1 in a folder with
parallel_bundle_adjust you could just call regular bundle_adjust to complete processing in the folder.
Steps 0 and 1 produce the -stats.tif and .match files that are used in the last step.

Command-line options for parallel_bundle_adjust:

-h, --help Display the help message.

--nodes-list <filename> The list of computing nodes, one per line. If not provided, run on the local
machine.

-e, --entry-point <integer (default: 0)> Stereo Pipeline entry point (start at this stage).

--stop-point <integer(default: 1)> Stereo Pipeline stop point (stop at the stage right before this value).

--verbose Display the commands being executed.

--processes <integer> The number of processes to use per node.

--threads-multiprocess <integer> The number of threads to use per process.

--threads-singleprocess <integer> The number of threads to use when running a single process (for
pre-processing and filtering).

13.37 parallel_sfs

The program parallel_sfs is a wrapper around sfs (Section 13.44) meant to divide the input DEM into tiles
with overlap, run sfs on each tile as multiple processes, potentially on multiple machines, and then merge the results
into a single output DEM. It has the same options as sfs, and a few additional ones, as outlined below.

Examples for how to invoke it are in the SfS usage chapter.

Usage:

parallel_sfs -i <input DEM> -n <max iterations> -o <output prefix> <images> [other
↪→options]

Command-line options for parallel_sfs:
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--tile-size <integer (default: 300)> Size of approximately square tiles to break up processing into (not
counting the padding).

--padding <integer (default: 50)> How much to expand a tile in each direction. This helps with re-
ducing artifacts in the final mosaicked SfS output.

--num-processes <integer> Number of processes to use (the default program tries to choose best).

--nodes-list <filename> A file containing the list of computing nodes, one per line. If not provided,
run on the local machine.

--threads <integer (default: 1)> How many threads each process should use. The sfs executable is
single-threaded in most of its execution, so a large number will not help here.

--suppress-output Suppress output of sub-calls.

13.38 parallel_stereo

The parallel_stereo program is a modification of stereo designed to distribute the stereo processing over
multiple computing nodes. It uses GNU Parallel to manage the jobs, a tool which is distributed along with Stereo
Pipeline. It expects that all nodes can connect to each other using ssh without password and that they share the same
storage space. parallel_stereo can also be useful when processing extraterrestrial data on a single computer.
This is because ISIS camera models are restricted to a single thread, but parallel_stereo can run multiple
processes in parallel to reduce computation times.

At the simplest, parallel_stereo can be invoked exactly like stereo, with the addition of the list of nodes to
use (if using multiple nodes).

parallel_stereo --nodes-list machines.txt <other stereo options>

It will create the same output files as stereo. Internally some of them will be GDAL VRT files, that is, plain text
virtual mosaics of files created by individual processes, with the actual files in subdirectories; ASP and GDAL tools
are able to use these virtual files in the same way as regular binary TIF files.

If your jobs are launched on a cluster or supercomputer, the name of the file containing the list of nodes may exist as
an environmental variable. For example, on NASA’s Pleiades Supercomputer, which uses the Portable Batch System
(PBS), the list of nodes can be retrieved as $PBS_NODEFILE.

It is important to note that when invoking this tool only the correlation, blending, subpixel refinement, and triangulation
stages of stereo (Section 13.46.2) are spread over multiple machines, with the preprocessing and filtering stages using
just one node, as they require global knowledge of the data. In addition, not all stages of stereo benefit equally from
parallelization. Most likely to gain are stages 1 and 2 (correlation and refinement) which are the most computationally
expensive.

For these reasons, while parallel_stereo can be called to do all stages of stereo generation from start to finish
in one command, it may be more resource-efficient to invoke it using a single node for stages 0 and 3, many nodes for
stages 1 and 2, and just a handful of nodes for stage 4 (triangulation). For example, to invoke the tool only for stage 2,
one uses the options:

--entry-point 2 --stop-point 3

By default, stages 1, 2, and 4 of parallel_stereo use as many processes as there are cores on each node, and one
thread per process. These can be customized as shown in the options below.

-h, --help Display the help message.

--nodes-list <filename> The list of computing nodes, one per line. If not provided, run on the local
machine.

192 Chapter 13. Tools



Ames Stereo Pipeline Documentation, Release 3.0.0

--ssh <filename> Specify the path to an alternate version of the ssh tool to use.

-e, --entry-point <integer (from 0 to 4)> Stereo Pipeline entry point (start at this stage).

--stop-point <integer (from 1 to 5)> Stereo Pipeline stop point (stop at the stage right before this).

--corr-seed-mode <integer (from 0 to 3)> Correlation seed strategy (Section 14.2).

--sparse-disp-options <string (default: “”)> Options to pass directly to sparse_disp (Section 4.4).
Use quotes around this string.

--verbose Display the commands being executed.

--job-size-w <integer (default: 2048)> Pixel width of input image tile for a single process. For align-
ment method local_epipolar or SGM/MGM, if not explicitely set, it is
overridden by corr-tile-size + 2 * sgm-collar-size. See also Section 14.1.2.

--job-size-h <integer (default: 2048)> Pixel height of input image tile for a single process. See also
note at –job-size-w.

--processes <integer> The number of processes to use per node.

--threads-multiprocess <integer> The number of threads to use per process.

--threads-singleprocess <integer> The number of threads to use when running a single process (for
pre-processing and filtering).

--dry-run Do not launch the jobs, only print the commands that should be run.

--parallel-options <string (default: “”)> Options to pass directly to GNU Parallel. Example:
“–sshdelay 1 –controlmaster”.

13.39 pc_align

This tool can be used to align two point clouds. The algorithms employed are one of the several flavors of Iterative
Closest Point (ICP), based on the libpointmatcher library [PCSM13]

https://github.com/ethz-asl/libpointmatcher

It also implements the Fast Global Registration algorithm

https://github.com/IntelVCL/FastGlobalRegistration

In addition, it supports feature-based alignment (terrains are hillshaded and interest point matches are found among
them), and alignment using least squares. It can handle a scale change in addition to rotations and translations. For
joint alignment of more than two clouds, the related tool n_align can be used (Section 13.33).

Usage:

pc_align --max-displacement <float> [other options] \
<reference cloud> <source cloud> -o <output prefix>}

An example of using this tool is in Section 5.2.5.

Several important things need to be kept in mind if pc_align is to be used successfully and give accurate results, as
described below.

13.39. pc_align 193

https://github.com/ethz-asl/libpointmatcher
https://github.com/IntelVCL/FastGlobalRegistration


Ames Stereo Pipeline Documentation, Release 3.0.0

13.39.1 The input point clouds

Due to the nature of ICP, the first input point cloud, that is, the reference (fixed) cloud, should be denser than the
second, source (movable) point cloud, to get the most accurate results. This is not a serious restriction, as one can
perform the alignment this way and then simply invert the obtained transform if desired (pc_align outputs both the
direct and inverse transform, and can output the reference point cloud transformed to match the source and vice-versa).

In many typical applications, the source and reference point clouds are already roughly aligned, but the source point
cloud may cover a larger area than the reference. The user should provide to pc_align the expected maximum dis-
tance (displacement) source points may move by as result of alignment, using the option --max-displacement.
This number will help remove source points too far from the reference point cloud which may not match successfully
and may degrade the accuracy. If in doubt, this value can be set to something large but still reasonable, as the tool
is able to throw away a certain number of unmatched outliers. At the end of alignment, pc_align will display
the observed maximum displacement, a multiple of which can be used to seed the tool in a subsequent run. If an
initial transform is applied to the source cloud (Section 13.39.5), the outliers are thrown out after this operation. The
observed maximum displacement is also between the source points with this transform applied and the source points
after alignment to the reference.

The user can choose how many points to pick from the reference and source point clouds to perform the alignment.
The amount of memory and processing time used by pc_align is directly proportional to these numbers, ideally the
more points the better. Pre-cropping to judiciously chosen regions may improve the accuracy and/or run-time.

13.39.2 Alignment method

The default alignment method is Point-to-Plane ICP, which may be more robust to large translations than Point-to-
Point ICP, though the latter can be good enough if the input point clouds have small alignment errors and it is faster
and uses less memory as well. The tool also accepts an option named --highest-accuracy which will compute
the normals for Point-to-Plane ICP at all points rather than about a tenth of them. This option is not necessary most of
the time, but may result in better alignment at the expense of using more memory and processing time.

The default alignment transform is rigid, that is, a combination of rotation and translation. With Point-to-Point ICP, it
is also possible to solve for a scale change (to obtain a so-called similarity transform). It is suggested this
approach be used only when a scale change is expected. It can be turned on by setting --alignment-method
similarity-point-to-point. (This method works best if an initial alignment is first performed with, for
example, the Point-to-Plane approach, to determine the rotation and translation part of the transform, and then that one
can be used as an initial guess in order to solve for the scale as well.)

For very large scale difference or translation among the two clouds, both of these algorithms may fail. If the clouds
are DEMs, one may specify the option --initial-transform-from-hillshading string which will
hillshade the two DEMs, find interest point matches among them, and use that to compute an initial transform between
the clouds (Section 13.39.5), which may or may not contain scale, after which the earlier algorithms will be applied to
refine the transform. This functionality is implemented with ASP’s hillshade, ipfind, and ipmatch tools, and
pc_align has options to pass flags to these programs, such as to increase the number interest points being found, if
the defaults are not sufficient. If the two clouds look too different for interest point matching to work, they perhaps
can be re-gridded to use the same (coarser) grid, as described in Section 13.39.10, to obtain the initial transform which
can then be applied to the original clouds.

A non-ICP algorithm supported by ASP is Fast Global Registration, accessible with --alignment-method fgr,
and customizable using the --fgr-options field (see the table below for more details). This approach can perform
better than ICP when the clouds are close enough to each other but there is a large number of outliers, since it does a
cross-check, so it can function with very large --max-displacement. It does worse if the clouds need a big shift
to align.

This one is being advertised as less sensitive to outliers, hence it should give good results with a larger value of the
maximum displacement.
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Another option is to use least squares (with outlier handling using a robust cost function) to find the transform,
if the reference cloud is a DEM. For this, one should specify the alignment method as least-squares or
similarity-least-squares (the latter also solves for scale). It is suggested that the input clouds be very
close or otherwise the --initial-transform option be used, for the method to converge, and use perhaps on the
order of 10-20 iterations and a smaller value for --max-num-source-points (perhaps a few thousand) for this
approach to converge reasonably fast.

13.39.3 File formats

The input point clouds can be in one of several formats: ASP’s point cloud format (the output of stereo), DEMs as
GeoTIFF or ISIS cub files, LAS files, or plain-text CSV files (with .csv or .txt extension).

By default, CSV files are expected to have on each line the latitude and longitude (in degrees), and the height above
the datum (in meters), separated by commas or spaces. Alternatively, the user can specify the format of the CSV
file via the --csv-format option. Entries in the CSV file can then be (in any order) (a) longitude, latitude (in
degrees), height above datum (in meters), (b) longitude, latitude, distance from planet center (in meters or km), (c)
easting, northing and height above datum (in meters), in this case a PROJ.4 string must be set via --csv-proj4, (d)
Cartesian coordinates (x, y, z) measured from planet center (in meters). The precise syntax is described in the table
below. The tool can also auto-detect the LOLA RDR PointPerRow format.

Any line in a CSV file starting with the pound character (#) is ignored.

If none of the input files have a geoheader with datum information, and the input files are not in Cartesian co-
ordinates, the datum needs to be specified via the --datum option, or by setting --semi-major-axis and
--semi-minor-axis.

13.39.4 The alignment transform

The transform obtained by pc_align is output to a text file as a 4 × 4 matrix with the upper-left 3 × 3 submatrix
being the rotation (and potentially also a scale, per Section 13.39.2) and the top three elements of the right-most
column being the translation. This transform, if applied to the source point cloud, will bring it in alignment with the
reference point cloud. The transform assumes the 3D Cartesian coordinate system with the origin at the planet center
(known as ECEF). This matrix can be supplied back to the tool as an initial guess (Section 13.39.5). The inverse
transform is saved to a file as well.

13.39.5 Applying an initial transform

The transform output by pc_align can be supplied back to the tool as an initial guess via the
--initial-transform option, with the same or different clouds. If it is desired to simply apply this trans-
form to the clouds without further work, one can specify --num-iterations 0. This may be useful, for example,
in first finding the alignment transform over a smaller, more reliable region (e.g., over rock, excluding moving ice),
then applying it over the entire available dataset.

Alternatively, one can apply to the source cloud an initial shift, expressed in the North-East-Down coordinate system at
the centroid of the source points, before the alignment algorithm is invoked. Hence, if it is desired to move the source
cloud North by 5 m, East by 10 m, and down by 15 m relative to the point on planet surface which is the centroid
of the source points, one can invoke pc_align with --initial-ned-translation ’5 10 15’ (notice the
quotes).

The option --initial-rotation-angle can be used for similar purposes.

If an initial transform is used, the alignment transform output by the program will be from the source points before the
initial transform, hence the output alignment transform will incorporate the initial transform.
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If a good initial alignment is found, it is suggested to use a smaller value for --max-displacement, as the clouds
will already be mostly on top of each other after the initial transform is applied.

13.39.6 Interpreting the transform

The alignment transform, with its origin at the center of the planet, can result in large movements on the planet surface
even for small angles of rotation. Because of this it may be difficult to interpret both its rotation and translation
components.

The pc_align program outputs the translation component of this transform, defined as the vector from the centroid
of the original source points (before any initial transform applied to them) to the centroid of the source points with the
computed alignment transform applied to them. This translation component is displayed in three ways (a) Cartesian
coordinates with the origin at the planet center, (b) Local North-East-Down coordinates at the centroid of the source
points (before any initial transform), and (c) Latitude-Longitude-Height differences between the two centroids. If the
effect of the transform is small (e.g., the points moved by at most several hundred meters) then the representation in
the form (b) above is most amenable to interpretation as it is in respect to cardinal directions and height above ground
if standing at a point on the planet surface.

This program prints to screen the Euler angles of the rotation transform, and also the axis of rotation and the angle
measured against that axis. It can be convenient to interpret the rotation as being around the center of gravity of the
reference cloud, even though it was computed as a rotation around the planet center, since changing the point around
which a rigid transform is applied will only affect its translation component, which is relative to that point, but not the
rotation matrix.

13.39.7 Error metrics and outliers

The tool outputs to CSV files the lists of errors together with their locations in the source point cloud, before the
alignment of the source points (but after applying any initial transform), and also after the alignment computed by the
tool. They are named <output prefix>-beg_errors.csv and <output prefix>-end_errors.csv.
An error is defined as the distance from a source point used in alignment to the closest reference point. The format
of output CSV files is the same as of input CSV files, or as given by --csv-format, although any columns of
extraneous data in the input files are not saved on output.

The program prints to screen and saves to a log file the 16th, 50th, and 84th error percentiles as well as the means of
the smallest 25%, 50%, 75%, and 100% of the errors.

When the reference point cloud is a DEM, a more accurate computation of the errors from source points to the reference
cloud is used. A source point is projected onto the datum of the reference DEM, its longitude and latitude are found,
then the DEM height at that position is interpolated. That way we determine a “closest” point on the reference DEM
that interprets the DEM not just as a collection of points but rather as a polyhedral surface going through those points.
These errors are what is printed in the statistics. To instead compute errors as done for other type of point clouds, use
the option --no-dem-distances.

By default, when pc_align discards outliers during the computation of the alignment transform, it keeps the 75%
of the points with the smallest errors. As such, a way of judging the effectiveness of the tool is to look at the mean of
the smallest 75% of the errors before and after alignment.
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13.39.8 Output point clouds and convergence history

The transformed input point clouds (the source transformed to match the reference, and the reference transformed to
match the source) can also be saved to disk if desired. If an input point cloud is in CSV or ASP point cloud format,
the output transformed cloud will be in the same format. If the input is a DEM, the output will be an ASP point cloud,
since a gridded point cloud may not stay so after a 3D transform. The point2dem program can be used to re-grid
the obtained point cloud back to a DEM.

The convergence history for pc_align (the translation and rotation change at each iteration) is saved to disk and can
be used to fine-tune the stopping criteria.

13.39.9 Manual alignment

If automatic alignment fails, for example, if the clouds are too different, or they differ by a scale factor, a manual
alignment can be computed as an initial guess transform (and one can stop there if pc_align is invoked with 0
iterations). For that, the input point clouds should be first converted to DEMs using point2dem, unless in that
format already. Then, stereo_gui can be called to create manual point correspondences (interest point matches)
from the reference to the source DEM (hence they should be displayed in the GUI in this order, from left to right, and
one can hillshade them to see features better). Once the match file is saved to disk, it can be passed to pc_align
via the --match-file option, which will compute an initial transform before continuing with alignment. This
transform can also be used for non-DEM clouds once it is found using DEMs obtained from those clouds.

13.39.10 Creating a point cloud from a DEM

Given a DEM, if one invokes pc_align as follows:

pc_align dem.tif dem.tif --max-displacement -1 --num-iterations 0 \
--save-transformed-source-points -o run/run

this will create a point cloud out of the DEM. This cloud can then be re-gridded using point2dem at a lower
resolution or with a different projection.

13.39.11 Applying the pc_align transform to cameras

If pc_align is used to align a DEM obtained with ASP to a preexisting reference DEM, the obtained align-
ment transform can be applied to the cameras used to create the ASP DEM, so the cameras then become aligned
with the pre-existing DEM. That is accomplished by running bundle adjustment with zero iterations and the option
--initial-transform.

As an example, assume the reference DEM is ref.tif, and the ASP DEM is created as:

parallel_stereo left.tif right.tif left.xml right.xml output/run
point2dem output/run-PC.tif

The ASP DEM output/run-DEM.tif is aligned to the reference DEM as:

pc_align --max-displacement 1000 ref.tif output/run-DEM.tif \
-o align/run

The alignment is applied to cameras the following way:

bundle_adjust left.tif right.tif left.xml right.xml \
--initial-transform align/run-transform.txt \
--num-iterations 0 -o ba_align/run
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This should create the adjusted cameras incorporating the alignment transform:

ba_align/run-left.adjust, ba_align/run-right.adjust

If pc_align was invoked with the two DEMs in reverse order, the transform to use is:

align/run-inverse-transform.txt

As an application, the cameras can now be mapprojected onto the reference DEM, hopefully with no registration error
as:

mapproject ref.tif left.tif left_map.tif \
--bundle-adjust-prefix ba_align/run

and in the same way for the right image.

If, however, the initial stereo was done with cameras that already were bundle adjusted, so the stereo command had
the option:

--bundle-adjust-prefix initial_ba/run

we need to integrate those initial adjustments with this alignment transform. To do that, run the slightly modified
command:

bundle_adjust left.tif right.tif left.xml right.xml \
--initial-transform align/run-transform.txt \
--input-adjustments-prefix initial_ba/run \
--num-iterations 0 -o ba_align/run

Here zero iterations were used since it was desired to only apply pre-existing transforms rather than again optimize
the cameras, when the camera will further move.

13.39.12 Troubleshooting

Remember that filtering is applied only to the source point cloud. If you have an input cloud with a lot of noise, make
sure it is being used as the source cloud.

If you are not getting good results with pc_align, something that you can try is to convert an input point cloud into
a smoothed DEM. Use point2dem to do this and set --search-radius-factor if needed to fill in holes in
the DEM. For some input data this can significantly improve alignment accuracy.

13.39.13 Command-line options for pc_align

--num-iterations <integer (default: 1000)> Maximum number of iterations.

--max-displacement <float> Maximum expected displacement of source points as result of alignment,
in meters (after the initial guess transform is applied to the source points). Used
for removing gross outliers in the source (movable) point cloud.

-o, --output-prefix <filename> Specify the output file prefix.

--outlier-ratio <float (default: 0.75)> Fraction of source (movable) points considered inliers (after
gross outliers further than max-displacement from reference points are removed).

--max-num-reference-points <integer (default: 10^8)> Maximum number of (randomly picked)
reference points to use.
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--max-num-source-points <integer (default: 10^5)> Maximum number of (randomly picked)
source points to use (after discarding gross outliers).

--alignment-method <string (default: point-to-plane)> The type of iterative closest point method to
use. Choices: point-to-plane, point-to-point, similarity-point-to-point, fgr, least-
squares, similarity-least-squares

--highest-accuracy Compute with highest accuracy for point-to-plane (can be much slower).

--datum <string> Sets the datum for CSV files. Options:

• WGS_1984

• D_MOON (1,737,400 meters)

• D_MARS (3,396,190 meters)

• MOLA (3,396,000 meters)

• NAD83

• WGS72

• NAD27

• Earth (alias for WGS_1984)

• Mars (alias for D_MARS)

• Moon (alias for D_MOON)

--semi-major-axis <float> Explicitly set the datum semi-major axis in meters.

--semi-minor-axis <float> Explicitly set the datum semi-minor axis in meters.

--csv-format <string> Specify the format of input CSV files as a list of entries col-
umn_index:column_type (indices start from 1). Examples: 1:x 2:y 3:z
(a Cartesian coordinate system with origin at planet center is assumed, with
the units being in meters), 5:lon 6:lat 7:radius_m (longitude and lat-
itude are in degrees, the radius is measured in meters from planet center),
3:lat 2:lon 1:height_above_datum, 1:easting 2:northing
3:height_above_datum (need to set --csv-proj4; the height above da-
tum is in meters). Can also use radius_km for column_type, when it is again
measured from planet center.

--csv-proj4 <string> The PROJ.4 string to use to interpret the entries in input CSV files, if those files
contain Easting and Northing fields.

--compute-translation-only Compute the transform from source to reference point cloud as a transla-
tion only (no rotation).

--save-transformed-source-points Apply the obtained transform to the source points so they match
the reference points and save them.

--save-inv-transformed-reference-points Apply the inverse of the obtained transform to the reference
points so they match the source points and save them.

--initial-transform <string> The file containing the transform to be used as an initial guess. It can
come from a previous run of the tool.

--initial-ned-translation <string> Initialize the alignment transform based on a translation with this
vector in the North-East-Down coordinate system around the centroid of the ref-
erence points. Specify it in quotes, separated by spaces or commas.
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--initial-rotation-angle <double (default: 0.0)> Initialize the alignment transform as the rotation
with this angle (in degrees) around the axis going from the planet center to the
centroid of the point cloud. If --initial-ned-translation is also spec-
ified, the translation gets applied after the rotation.

--initial-transform-from-hillshading <string> If both input clouds are DEMs, find interest point
matches among their hillshaded versions, and use them to compute an initial
transform to apply to the source cloud before proceeding with alignment. Specify
here the type of transform, as one of: ‘similarity’ (rotation + translation + scale),
‘rigid’ (rotation + translation) or ‘translation’.

--hillshade-options Options to pass to the hillshade program when computing the trans-
form from hillshading. Default: --azimuth 300 --elevation 20
--align-to-georef.

--ipfind-options Options to pass to the ipfind program when computing the trans-
form from hillshading. Default: --ip-per-image 1000000
--interest-operator sift --descriptor-generator sift

--ipmatch-options Options to pass to the ipmatch program when computing the
transform from hillshading. Default: --inlier-threshold
100 --ransac-iterations 10000 --ransac-constraint
similarity

--match-file Compute an initial transform from the source to the reference point
cloud using manually selected point correspondences (obtained for ex-
ample using stereo_gui). The type of transform can be set via
--initial-transform-from-hillshading string

--initial-transform-outlier-removal-params <pct factor (default: 75.0 3.0)> When com-
puting an initial transform based on features, either via the
--initial-transform-from-hillshading or --match-file
options, remove outliers when this transform is applied by excluding the errors
larger than this percentile times this factor.

--fgr-options Options to pass to the Fast Global Registration algorithm, if
used. Default: div_factor: 1.4 use_absolute_scale:
0 max_corr_dist: 0.025 iteration_number: 100
tuple_scale: 0.95 tuple_max_cnt: 10000

--diff-rotation-error <float (default: 10^{-8})> Change in rotation amount below which the algo-
rithm will stop (if translation error is also below bound), in degrees.

--diff-translation-error <float (default: 10^{-3})> Change in translation amount below which the al-
gorithm will stop (if rotation error is also below bound), in meters.

--no-dem-distances For reference point clouds that are DEMs, don’t take advantage of the fact that
it is possible to interpolate into this DEM when finding the closest distance to it
from a point in the source cloud (the text above has more detailed information).

--config-file <file.yaml> This is an advanced option. Read the alignment parameters from a configura-
tion file, in the format expected by libpointmatcher, over-riding the command-line
options.

--threads <integer (default: 0)> Set the number threads to use. 0 means use the default as set by
OpenMP. Only some parts of the algorithm are multi-threaded.

-h, --help Display the help message.
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13.40 pc_merge

This is a simple tool for combining multiple ASP-generated point cloud files into a single concatenated file. The output
file will be float32 unless the input images are float64 or the user has specified the float64 option.

pc_merge can merge clouds with 1, 3, 4, and 6 bands. In particular, it can merge output-prefix-L.tif images created
by stereo. This is useful if it is desired to create an ortho-image from a merged cloud with point2dem. In that
case, one can invoke pc_merge on individual “L” files to create a merged texture file to pass to point2dem together
with the merged point cloud tile.

Usage:

pc_merge [options] [required output file option] <multiple point cloud files>

Command-line options for pc_merge:

--help Display the help message

-d, --write-double Force output file to be float64 instead of float32.

-o, --output-file <name> Specify the output file (required).

13.41 point2dem

The point2dem program produces a GeoTIFF terrain model and/or an orthographic image from a set of point clouds.
The clouds can be created by the stereo command, or be in LAS or CSV format.

Example:

point2dem output-prefix-PC.tif -o stereo/filename \
--nodata-value -10000 -n

This produces a digital elevation model. The program will infer the spheroid (datum) and the projection to use from
the input images, if that information is present. Otherwise these can be set with -r and --t_srs.

Here, pixels with no data will be set to a value of -10000. Unless the input images have projection information, the
resulting DEM will be saved in a simple cylindrical map-projection. The DEM is stored by default as a one channel,
32-bit floating point GeoTIFF file.

The -n option creates an 8-bit, normalized version of the DEM that can be easily loaded into a standard image viewing
application for debugging.

Another example:

point2dem output-prefix-PC.tif -o stereo/filename -r moon \
--orthoimage output-prefix-L.tif

This command takes the left input image and orthographically projects it onto the 3D terrain produced by the Stereo
Pipeline. The resulting -DRG.tif file will be saved as a GeoTIFF image with the same geoheader as the DEM.

Here we have explicitly specified the spheroid (-r moon), rather than have it inferred automatically. The Moon
spheroid will have a radius of 1737.4 km.

In the following example the point cloud is very close to the South Pole of the Moon, and for that reason we use the
stereographic projection:

point2dem --stereographic --proj-lon 0 --proj-lat -90 output-prefix-PC.tif
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Multiple point clouds can be passed as inputs, to be combined into a single DEM. If it is desired to use the
--orthoimage option as above, the clouds need to be specified first, followed by the L.tif images. Here is
an example, which combines together LAS and CSV point clouds together with an output file from stereo:

point2dem in1.las in2.csv output-prefix-PC.tif -o combined \
--dem-spacing 0.001 --nodata-value -32768

13.41.1 Comparing with MOLA Data

When comparing the output of point2dem to laser altimeter data, like MOLA, it is important to understand the
different kinds of data that are being discussed. By default, point2dem returns planetary radius values in meters.
These are often large numbers that are difficult to deal with. If you use the -r mars option, the output terrain model
will be in meters of elevation with reference to the IAU reference spheroid for Mars: 3,396,190 m. So if a post would
have a radius value of 3,396,195 m, in the model returned with the -r mars option, that pixel would just be 5 m.

You may want to compare the output to MOLA data. MOLA data is released in three ‘flavors,’ namely: Topography,
Radius, and Areoid. The MOLA Topography data product that most people use is just the MOLA Radius product
with the MOLA Areoid product subtracted. Additionally, it is important to note that all of these data products have a
reference value subtracted from them. The MOLA reference value is NOT the IAU reference value, but 3,396,000 m.

In order to compare with the MOLA data, you can do one of two different things. You could operate purely in
radius space, and have point2dem create radius values that are directly comparable to the MOLA radius data.
You can do this by having point2dem subtract the MOLA reference value, by using either -r mola or setting
--semi-major-axis 3396000 and --semi-minor-axis 3396000.

Alternatively, to get values that are directly comparable to MOLA Topography data, you’ll need to run point2dem
with either -r mars or -r mola, then run the ASP tool dem_geoid (Section 13.15). This program will convert
the DEM height values from being relative to the IAU reference spheroid or the MOLA spheroid to being relative to
the MOLA Areoid.

The newly obtained DEM will inherit the datum from the unadjusted DEM, so it could be either of the two earlier
encountered radii, but of course the heights in it will be in respect to the areoid, not to this datum. It is important to
note that one cannot tell from inspecting a DEM if it was adjusted to be in respect to the areoid or not, so there is the
potential of mixing up adjusted and unadjusted terrain models.

13.41.2 Post Spacing

Recall that stereo creates a point cloud file as its output and that you need to use point2dem on to create a
GeoTIFF that you can use in other tools. The point cloud file is the result of taking the image-to-image matches
(which were created from the kernel sizes you specified, and the subpixel versions of the same, if used) and projecting
them out into space from the cameras, and arriving at a point in real world coordinates. Since stereo does this for
every pixel in the input images, the default value that point2dem uses (if you don’t specify anything explicitly) is
the input image scale, because there’s an ‘answer’ in the point cloud file for each pixel in the original image.

However, as you may suspect, this is probably not the best value to use because there really isn’t that much ‘informa-
tion’ in the data. The true ‘resolution’ of the output model is dependent on a whole bunch of things (like the kernel
sizes you choose to use) but also can vary from place to place in the image depending on the texture.

The general ‘rule of thumb’ is to produce a terrain model that has a post spacing of about 3x the input image ground
scale. This is based on the fact that it is nearly impossible to uniquely identify a single pixel correspondence between
two images, but a 3x3 patch of pixels provides improved matching reliability. As you go to numerically larger post-
spacings on output, you’re averaging more point data (that is probably spatially correlated anyway) together.

So you can either use the --dem-spacing argument to point2dem to do that directly, or you can use your favorite
averaging algorithm to reduce the point2dem-created model down to the scale you want.
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If you attempt to derive science results from an ASP-produced terrain model with the default DEM spacing, expect
serious questions from reviewers.

13.41.3 Using with LAS or CSV Clouds

The point2dem program can take as inputs point clouds in LAS and CSV formats. These differ from point clouds
created by stereo by being, in general, not uniformly distributed. It is suggested that the user pick carefully the output
resolution for such files (--dem-spacing). If the output DEM turns out to be sparse, the spacing could be increased,
or one could experiment with increasing the value of --search-radius-factor, which will fill in small gaps in
the output DEM by searching further for points in the input clouds.

It is expected that the input LAS files have spatial reference information such as WKT data. Otherwise it is assumed
that the points are raw x, y, z values in meters in reference to the planet center.

Unless the output projection is explicitly set when invoking point2dem, the one from the first LAS file will be used.

For LAS or CSV clouds it is not possible to generate intersection error maps or ortho images.

For CSV point clouds, the option --csv-format must be set. If such a cloud contains easting, northing, and height
above datum, the option --csv-proj4 containing a PROJ.4 string needs to be specified to interpret this data (if the
PROJ.4 string is set, it will be also used for output DEMs, unless --t_srs is specified).

Command-line options for point2dem:

-h, --help Display the help message.

--nodata-value <float (default: -3.40282347e+38)> Set the nodata value.

--use-alpha Create images that have an alpha channel.

-n, --normalized Also write a normalized version of the DEM (for debugging).

--orthoimage Write an orthoimage based on the texture files passed in as inputs (after the point
clouds).

--errorimage Write an additional image whose values represent the triangulation ray intersec-
tion error in meters (the closest distance between the rays emanating from the
two cameras corresponding to the same point on the ground).

-o, --output-prefix Specify the output prefix.

-t, --output-filetype <string (default: tif)> Specify the output file type.

--x-offset <float (default: 0)> Add a horizontal offset to the DEM.

--y-offset <float (default: 0)> Add a horizontal offset to the DEM.

--z-offset <float (default: 0)> Add a vertical offset to the DEM.

--rotation-order <string (default: xyz)> Set the order of an Euler angle rotation applied to the 3D
points prior to DEM rasterization.

--phi-rotation <float (default: 0)> Set a rotation angle phi.

--omega-rotation <float (default: 0)> Set a rotation angle omega.

--kappa-rotation <float (default: 0)> Set a rotation angle kappa.

--t_srs string Specify the output projection (PROJ.4 string). Can also be an URL or in WKT
format, as for GDAL.

--t_projwin <xmin ymin xmax ymax> The output DEM will have corners with these georeferenced
coordinates.
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--datum <string> Set the datum. This will override the datum from the input images and also
--t_srs, --semi-major-axis, and --semi-minor-axis. Options:

• WGS_1984

• D_MOON (1,737,400 meters)

• D_MARS (3,396,190 meters)

• MOLA (3,396,000 meters)

• NAD83

• WGS72

• NAD27

• Earth (alias for WGS_1984)

• Mars (alias for D_MARS)

• Moon (alias for D_MOON)

--reference-spheroid <string> This is identical to the datum option.

--semi-major-axis <float (default: 0)> Explicitly set the datum semi-major axis in meters.

--semi-minor-axis <float (default: 0)> Explicitly set the datum semi-minor axis in meters.

--sinusoidal Save using a sinusoidal projection.

--mercator Save using a Mercator projection.

--transverse-mercator Save using a transverse Mercator projection.

--orthographic Save using an orthographic projection.

--stereographic Save using a stereographic projection.

--oblique-stereographic Save using an oblique stereographic projection.

--gnomonic Save using a gnomonic projection.

--lambert-azimuthal Save using a Lambert azimuthal projection.

--utm <zone> Save using a UTM projection with the given zone.

--proj-lat <float> The center of projection latitude (if applicable).

--proj-lon <float> The center of projection longitude (if applicable).

--proj-scale <float> The projection scale (if applicable).

--false-northing <float> The projection false northing (if applicable).

--false-easting <float> The projection false easting (if applicable).

-s, --dem-spacing <float (default: 0)> Set output DEM resolution (in target georeferenced units per
pixel). If not specified, it will be computed automatically (except for LAS and
CSV files). Multiple spacings can be set (in quotes) to generate multiple output
files. This is the same as the --tr option.

--search-radius-factor <float> Multiply this factor by dem-spacing to get the search radius.
The DEM height at a given grid point is obtained as a weighted average of
heights of all points in the cloud within search radius of the grid point, with
the weights given by a Gaussian. If not specified, the default search radius is
max(dem-spacing, default_dem_spacing), so the default factor is about 1.
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--gaussian-sigma-factor <float (default: 0)> The value s to be used in the Gaussian exp(−s ∗
(x/grid_size)2) when computing the DEM. The default is -log(0.25) = 1.3863.
A smaller value will result in a smoother terrain.

--csv-format <string> Specify the format of input CSV files as a list of entries col-
umn_index:column_type (indices start from 1). Examples: 1:x 2:y 3:z
(a Cartesian coordinate system with origin at planet center is assumed, with
the units being in meters), 5:lon 6:lat 7:radius_m (longitude and lat-
itude are in degrees, the radius is measured in meters from planet center),
3:lat 2:lon 1:height_above_datum, 1:easting 2:northing
3:height_above_datum (need to set --csv-proj4; the height above da-
tum is in meters). Can also use radius_km for column_type, when it is again
measured from planet center.

--csv-proj4 <string> The PROJ.4 string to use to interpret the entries in input CSV files, if those files
contain Easting and Northing fields. If not specified, --t_srs will be used.

--rounding-error <float (default: 1/2^{10}=0.0009765625)> How much to round the output DEM
and errors, in meters (more rounding means less precision but potentially smaller
size on disk). The inverse of a power of 2 is suggested.

--dem-hole-fill-len <integer (default: 0)> Maximum dimensions of a hole in the output DEM to fill
in, in pixels.

--orthoimage-hole-fill-len <integer (default: 0)> Maximum dimensions of a hole
in the output orthoimage to fill in, in pixels. See also
--orthoimage-hole-fill-extra-len.

--orthoimage-hole-fill-extra-len <integer (default: 0)> This value, in pixels, will make orthoimage
hole filling more aggressive by first extrapolating the point cloud. A small value
is suggested to avoid artifacts. Hole-filling also works better when less strict with
outlier removal, such as in --remove-outliers-params, etc.

--remove-outliers-params <pct factor (default: 75.0 3.0)> Outlier removal based on percentage.
Points with triangulation error larger than pct-th percentile times factor and points
too far from the cluster of most points will be removed as outliers.

--max-valid-triangulation-error <float (default: 0)> Outlier removal based on threshold. Points
with triangulation error larger than this, if positive (measured in meters) will be
removed from the cloud. This option takes precedence over –remove-outliers-
params.

--max-output-size <columns rows> Creating of the DEM will be aborted if it is calculated to exceed
this size in pixels.

--median-filter-params <window_size (integer) threshold (float)> If the point cloud height at the
current point differs by more than the given threshold from the median of heights
in the window of given size centered at the point, remove it as an outlier. Use for
example 11 and 40.0.

--erode-length <length (integer)> Erode input point clouds by this many pixels at boundary (after
outliers are removed, but before filling in holes).

--filter <string (default: weighted_average)> The filter to apply to the heights of the cloud points
within a given circular neighborhood when gridding (its radius is controlled via
--search-radius-factor). Options:

• weighted_average (default),

• min
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• max

• mean

• median

• stddev

• count (number of points)

• nmad (= 1.4826 * median(abs(X - median(X)))),

• n-pct (where n is a real value between 0 and 100, for example, 80-pct,
meaning, 80th percentile). Except for the default, the name of the filter will
be added to the obtained DEM file name, e.g., output-min-DEM.tif if
--filter min is used.

--use-surface-sampling Use the older algorithm, interpret the point cloud as a surface made up of
triangles and sample it (prone to aliasing).

--fsaa Oversampling amount to perform antialiasing. Obsolete, can be used only in
conjunction with --use-surface-sampling.

--threads <integer (default: 0)> Select the number of processors (threads) to use.

--threads <integer (default: 0)> Set the number of processors (threads) to use. Zero means use as
many threads as there are cores.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tif-comp <None|LZW|Deflate|Packbits> TIFF compression method.

13.42 point2las

This tool can be used to convert point clouds generated by ASP to the public LAS format for interchange of 3-
dimensional point cloud data.

If the input cloud has a datum, or the --datum option is specified, then the output LAS file will be created in respect
to this datum. Otherwise raw x, y, z values will be saved.

Example usage:

point2las output-prefix-PC.tif -o output-prefix

This will create the file output-prefix.las. If the --compressed option is used, it will write instead
output-prefix.laz

13.42.1 Outlier removal

The point2las program filters out outliers in the input point cloud using the ray triangulation error (the fourth band
in the cloud), hence points with an error above a certain threshold are not included in the output LAS file.

It first picks a desired number of samples from the cloud, sorts the positive triangulation errors from the sample (the
errors equal to 0 correspond to invalid points, so these are ignored), and computes some statistical measures which are
printed to the screen. Those include the minimum, mean, standard deviation, maximum, and the error percentiles at
25% (Q1), 50% (median, Q2) and 75% (Q3).

Then, given the desired percentile and factor in --remove-outliers-params, it computes the error for this
percentile and multiplies it by the factor. With the default settings, this amounts to 3*Q3. This value is used as the
cutoff threshold to remove outliers.
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If the option --use-tukey-outlier-removal is set, the outlier cutoff is computed as Q3 + 1.5*(Q3 - Q1)
[Tuk77]. This takes precedence over the earlier approach.

Alternatively, the user can specify a custom outlier cutoff via --max-valid-triangulation-error, when it
will be used instead of any of the above.

If it is desired to not remove any outliers, the percentage in --remove-outliers-params can be set to 100.

After the LAS file is saved, the number of outliers and their percentage from the total number of points are printed on
the screen. Generally, the outlier threshold should not be so restrictive that more than approximately 30% of the points
are eliminated.

13.42.2 Command-line options for point2las

-h, --help Display the help message.

--datum <string> Create a geo-referenced LAS file in respect to this datum. Options:

• WGS_1984

• D_MOON (1,737,400 meters)

• D_MARS (3,396,190 meters)

• MOLA (3,396,000 meters)

• NAD83

• WGS72

• NAD27

• Earth (alias for WGS_1984)

• Mars (alias for D_MARS)

• Moon (alias for D_MOON)

--reference-spheroid <string> This is identical to the datum option.

--t_srs <proj string> Specify the output projection (PROJ.4 string).

--compressed Compress using laszip.

-o, --output-prefix <filename> Specify the output file prefix.

--remove-outliers-params <pct factor (default: 75.0 3.0)> Outlier removal based on percentage.
Points with triangulation error larger than pct-th percentile times factor will be
removed as outliers.

--use-tukey-outlier-removal Remove outliers above Q3 + 1.5*(Q3 - Q1). Takes precedence over the
above approach.

--max-valid-triangulation-error <float (default: 0)> Outlier removal based on threshold. Points
with triangulation error larger than this, if positive (measured in meters) will be
removed from the cloud. Takes precedence over the above options.

--num-samples-for-outlier-estimation <integer (default: 1000000)> Approximate number of sam-
ples to pick from the input cloud to find the outlier cutoff based on triangulation
error.

--threads <integer (default: 0)> Set the number threads to use. 0 means use the default defined in the
program or in the .vwrc file.
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13.43 point2mesh

The point2mesh tool produces a mesh file in .obj format that can be visualized in any mesh viewer, such as
Blender or MeshLab (see Section 5.2.12 and Section 5.2.13 for details).

Unlike DEMs, the 3D mesh is not meant to be used as a finished scientific product. Rather, it can be used for fast
visualization to create a 3D view of the generated terrain.

The point2mesh program requires a point cloud file or a DEM, and an optional texture file. For example, it can be
used with output-prefix-PC.tif and output-prefix-L.tif, as output by stereo, or otherwise with
output-prefix-DEM.tif and output-prefix-DRG.tif, with the latter two output by point2dem.

When a texture file is not provided, a constant texture is applied. (A mesh viewer will still show a color variation
that depends on the local curvature of the mesh.) In either case, point2mesh will produce a mesh file in plain text
format.

The -s (--point-cloud-step-size) flag sets the point cloud sub-sampling rate, and dictates the degree to
which the 3D model should be simplified. For 3D reconstructions, this can be essential for producing a model that can
fit in memory. The default value is 10, meaning every 10th point is used in the X and Y directions. In other words that
mean only 1/102 of the points are being used to create the model. Adjust this sampling rate according to how much
detail is desired, but remember that large models will impact the frame rate of the 3D viewer and affect performance.

The --texture-step-size flag sets the texture sub-sampling rate. For visualization it may be preferable for the
produced cloud to be rather coarse but for the texture overlayed on it to have higher resolution. This program enforces
that the cloud subsampling rate be a multiple of the texture subsampling rate, hence the sampled texture indices are a
superset of the point cloud indices.

Examples:

point2mesh -s 2 output-prefix-PC.tif output-prefix-L.tif
point2mesh -s 2 output-prefix-DEM.tif output-prefix-DRG.tif

meshlab output-prefix.obj

(Note that older versions of MeshLab may have a hard time opening a mesh if your output prefix is a directory. In that
case either open the mesh from the GUI or change to that directory having the .obj file first and invoke MeshLab
there.)

Command-line options for point2mesh:

-h, --help Display the help message.

-s, --point-cloud-step-size <integer (default: 10)> Sample by picking one out of these many samples
from the point cloud.

--texture-step-size <integer (default: 2)> Sample by picking one out of these many samples from the
texture.

--input-file <point-cloud-file> Explicitly specify the input file.

-o, --output-prefix <output-prefix> Specify the output prefix.

--texture-file <texture-file> Explicitly specify the texture file.

--center Center the model around the origin. Use this option if you are experiencing nu-
merical precision issues.

--precision <integer (default: 17)> How many digits of precision to save.
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13.44 sfs

The sfs tool can improve a DEM using shape-from-shading. Examples for how to invoke it are in the SfS usage
chapter. The tool parallel_sfs (Section 13.37) extends sfs to run using multiple processes and potentially on
multiple machines.

Usage:

sfs -i <input DEM> -n <max iterations> -o <output prefix> <images> [other options]

The tool outputs at each iteration the current DEM and a slew of other auxiliary and appropriately-named datasets.

Command-line options:

-i, --input-dem <filename> The input DEM to refine using SfS.

-o, --output-prefix <string> Prefix for output filenames.

-n, --max-iterations <integer (default: 100)> Set the maximum number of iterations.

--reflectance-type <integer (default: 1)> Reflectance types: 0. Lambertian 1. Lunar-Lambert 2.
Hapke 3. Experimental extension of Lunar-Lambert 4. Charon model (a vari-
ation of Lunar-Lambert)

--smoothness-weight <float (default 0.04)> A larger value will result in a smoother solution.

--initial-dem-constraint-weight <float (default:0)> A larger value will try harder to keep the SfS-
optimized DEM closer to the initial guess DEM.

--albedo-constraint-weight <float (default: 0)> If floating the albedo, a larger value will try harder
to keep the optimized albedo close to the nominal value of 1.

--bundle-adjust-prefix <path> Use the camera adjustments obtained by previously running bun-
dle_adjust with this output prefix.

--float-albedo Float the albedo for each pixel. Will give incorrect results if only one image is
present.

--float-exposure Float the exposure for each image. Will give incorrect results if only one image
is present.

--float-cameras Float the camera pose for each image except the first one.

--float-all-cameras Float the camera pose for each image, including the first one. Experimental.

--model-shadows Model the fact that some points on the DEM are in the shadow (occluded from
the Sun).

--shadow-thresholds <arg> Optional shadow thresholds for the input images (a list of real values in
quotes, one per image).

--shadow-threshold <arg> A shadow threshold to apply to all images instead of using individual
thresholds. (Must be positive.)

--custom-shadow-threshold-list <arg> A list having one image and one shadow threshold per line.
For the images specified there, override the shadow threshold supplied by other
means with this value.

--robust-threshold <arg> If positive, set the threshold for the robust measured-to-simulated intensity
difference (using the Cauchy loss). Any difference much larger than this will be
penalized.
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--estimate-height-errors Estimate the SfS DEM height uncertainty (in meters) by finding the height
perturbation at each grid point which will make at least one of the simulated im-
ages at that point change by more than twice the discrepancy between the unper-
turbed simulated image and the measured image. The SfS DEM must be provided
via the -i option.

–height-error-params (double integer) (default = 5.0 1000) Specify the largest height deviation to examine (in me-
ters), and how many samples to use from 0 to that height.

--save-dem-with-nodata Save a copy of the DEM while using a no-data value at a DEM grid point
where all images show shadows. To be used if shadow thresholds are set.

--use-approx-camera-models Use approximate camera models for speed.

--use-rpc-approximation Use RPC approximations for the camera models instead of approximate tab-
ulated camera models (invoke with -use-approx-camera-models). This
is broken and should not be used.

--rpc-penalty-weight <float (default: 0.1)> The RPC penalty weight to use to keep the higher-order
RPC coefficients small, if the RPC model approximation is used. Higher penalty
weight results in smaller such coefficients.

--coarse-levels <integer (default: 0)> Solve the problem on a grid coarser than the original by a factor
of 2 to this power, then refine the solution on finer grids. Experimental.

--max-coarse-iterations <integer (default: 50)> How many iterations to do at levels of resolution
coarser than the final result.

--crop-input-images Crop the images to a region that was computed to be large enough and keep them
fully in memory, for speed.

--blending-dist <integer (default: 0)> Give less weight to image pixels close to no-data or boundary
values. Enabled only when crop-input-images is true, for performance reasons.
Blend over this many pixels.

--blending-power <integer (default: 2)> A higher value will result in smoother blending.

--min-blend-size <integer (default: 0)> Do not apply blending in shadowed areas of dimensions less
than this.

--compute-exposures-only Quit after saving the exposures. This should be done once for a big DEM,
before using these for small sub-clips without recomputing them.

--image-exposures-prefix <path> Use this prefix to optionally read initial exposures (filename is
<path>-exposures.txt).

--model-coeffs-prefix <path> Use this prefix to optionally read model coefficients from a file (file-
name is <path>-model_coeffs.txt).

--model-coeffs <string of space-separated numbers> Use the model coefficients specified as a list
of numbers in quotes. For example:

• Lunar-Lambertian: O, A, B, C, would be "1 0.019 0.000242 -0.
00000146"

• Hapke: omega, b, c, B0, h, would be "0.68 0.17 0.62 0.52 0.
52"

• Charon: A, f(alpha), would be "0.7 0.63"

--crop-win <xoff yoff xsize ysize> Crop the input DEM to this region before continuing.

--init-dem-height <float (default: nan)> Use this value for initial DEM heights. An input DEM still
needs to be provided for georeference information.
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--nodata-value <float (default: nan)> Use this as the DEM no-data value, over-riding what is in the
initial guess DEM.

--float-dem-at-boundary Allow the DEM values at the boundary of the region to also float (not ad-
vised).

--fix-dem Do not float the DEM at all. Useful when floating the model params.

--float-reflectance-model Allow the coefficients of the reflectance model to float (not recommended).

--integrability-constraint-weight <float (default: 0.0)> Use the integrability constraint from Horn
1990 with this value of its weight (experimental).

--smoothness-weight-pq <float (default: 0.0)> Smoothness weight for p and q, when the integrability
constraint is used. A larger value will result in a smoother solution (experimen-
tal).

--query Print some info, including DEM size and the solar azimuth and elevation for the
images, and exit. Invoked from parallel_sfs.

--camera-position-step-size <integer (default: 1)> Larger step size will result in more aggressive-
ness in varying the camera position if it is being floated (which may result in a
better solution or in divergence).

--threads <integer (default: 0)> Select the number of processors (threads) to use.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tif-compress <None|LZW|Deflate|Packbits (default: LZW)> TIFF Compression method.

-v, --version Display the version of software.

-h, --help Display this help message.

13.45 sfs_blend

The sfs_blend tool is a very specialized DEM blending program developed for use in conjunction with Shape-
from-Shading (Section 13.44). It replaces in an SfS-produced DEM height values that are in permanent shadow with
values from the initial guess DEM used for SfS (which is typically the LOLA gridded DEM), with a transition region
between the two DEMs.

Motivation and an example of an invocation of this tool are given in the SfS usage chapter.

Command-line options:

--sfs-dem <arg> The SfS DEM to process.

--lola-dem <arg> The LOLA DEM to use to fill in the regions in permanent shadow.

--max-lit-image-mosaic <arg> The maximally lit image mosaic to use to determine the permanently
shadowed regions.

--image-threshold <float> The value separating permanently shadowed pixels from lit pixels in the
maximally lit image mosaic.

--lit-blend-length <float> The length, in pixels, over which to blend the SfS and LOLA DEMs at the
boundary of the permanently shadowed region towards the lit region.

--shadow-blend-length <float> The length, in pixels, over which to blend the SfS and LOLA DEMs at
the boundary of the permanently shadowed region towards the shadowed region.

13.45. sfs_blend 211



Ames Stereo Pipeline Documentation, Release 3.0.0

--weight-blur-sigma <float (default 0)> The standard deviation of the Gaussian used to blur the
weight that performs the transition from the SfS to the LOLA DEM. A higher
value results in a smoother transition (this does not smooth the DEMs). The ex-
tent of the blur is about 7 times this deviation though it tapers fast to 0 before
that. Set to 0 to not use this operation.

--min-blend-size <int (default 0)> Do not apply blending in shadowed areas of dimensions less than
this, hence keeping there the SfS DEM.

--output-dem <arg> The blended output DEM to save.

--output-weight <arg> The weight showing the proportion of the SfS DEM in the blend with the
LOLA DEM (1 is for purely SfS and 0 is for purely LOLA).

-v, --version Display the version of software.

-h, --help Display this help message.

13.46 stereo

The stereo program is the primary tool of the Ames Stereo Pipeline. It takes a stereo pair of images that overlap
and creates an output point cloud image that can be processed into a visualizable mesh or a DEM using point2mesh
and point2dem respectively.

Usage:

ISIS> stereo [options] <images> [<cameras>] <output_file_prefix>

Options:

-h, --help Display the help message.

-t, --session-type <type_name> Select the stereo session type to use for processing. Usually the pro-
gram can select this automatically by the file extension. Options:

• nadirpinhole

• pinhole

• isis

• dg

• rpc

• spot5

• aster

• opticalbar

• csm

• pinholemappinhole

• isismapisis

• dgmaprpc

• rpcmaprpc

• spot5maprpc

• astermaprpc
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• opticalbarmapopticalbar

• csmmapcsm

-s, --stereo-file <filename (default: ./stereo.default)> Define the stereo.default file to use.

-e, --entry-point <integer (from 0 to 5)> Stereo Pipeline entry point (start at this stage).

--stop-point <integer (from 1 to 6)> Stereo Pipeline stop point (stop at the stage right before this).

--corr-seed-mode <integer (from 0 to 3)> Correlation seed strategy (Section 14.2).

--threads <integer (default: 0)> Set the number of threads to use. Zero means use as many threads as
there are cores.

--no-bigtiff Tell GDAL to not create bigtiffs.

--tiff-comp <string (None|LZW|Deflate|Packbits)> TIFF compression method.

Example (for ISIS):

stereo file1.cub file2.cub results/run

For ISIS, a .cub file has both image and camera information, as such no separate camera files are specified.

Example (for Digital Globe Earth images):

stereo file1.tif file2.tif file1.xml file2.xml results/run

Multiple input images are also supported (Section 5.1.8).

This tool is is primarily designed to process USGS ISIS .cub files and Digital Globe data. However, Stereo Pipeline
does have the capability to process other types of stereo image pairs (e.g., image files with a CAHVOR camera model
from the NASA MER rovers). If you would like to experiment with these features, please contact the developers for
more information.

The <output_file_prefix> is prepended to all output data files. For example, setting
<output_file_prefix> to ‘out’ will yield files with names like out-L.tif and out-PC.tif.
To keep the Stereo Pipeline results organized in sub-directories, we recommend using an output prefix like
‘results-10-12-09/out’ for <output_file_prefix>. The stereo program will create a directory
called results-10-12-09/ and place files named out-L.tif, out-PC.tif, etc. in that directory.

More information about additional options that can be passed to stereo via the command line or via the stereo.
default configuration file can be found in Section 14. stereo creates a set of intermediate files, they are described
in Section 16.

13.46.1 Entry Points

The stereo -e <number> option can be used to restart a stereo job partway through the stereo correlation
process. Restarting can be useful when debugging while iterating on stereo.default settings.

Stage 0 (Preprocessing) Normalizes the two images and aligns them by locating interest points and matching them
in both images. The program is designed to reject outlying interest points. This stage writes out the pre-aligned
images and the image masks.

Stage 1 (Disparity Map Initialization) Performs pyramid correlation and builds a rough disparity map that is used
to seed the sub-pixel refinement phase.

Stage 2 (Blend) Blend the borders of adjacent tiles. Only needed for parallel stereo with the SGM/MGM algorithms.
Skipped otherwise.

Stage 3 (Sub-pixel Refinement) Performs sub-pixel correlation that refines the disparity map.
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Stage 4 (Outlier Rejection and Hole Filling) Performs filtering of the disparity map and (optionally) fills in holes
using an inpainting algorithm. This phase also creates a “good pixel” map.

Stage 5 (Triangulation) Generates a 3D point cloud from the disparity map.

13.46.2 Decomposition of Stereo

The stereo executable is a Python script that makes calls to separate C++ executables for each entry point.

Stage 0 (Preprocessing) calls stereo_pprc. Multi-threaded.

Stage 1 (Disparity Map Initialization) calls stereo_corr. Multi-threaded.

Stage 2 (Blend) class stereo_blend. Multi-threaded.

Stage 3 (Sub-pixel Refinement) class stereo_rfne. Multi-threaded.

Stage 4 (Outlier Rejection and Hole Filling) calls stereo_fltr. Multi-threaded.

Stage 5 (Triangulation) calls stereo_tri. Multi-threaded, except for ISIS input data.

All of the sub-programs have the same interface as stereo. Users processing a large number of stereo pairs on a
cluster may find it advantageous to call these executables in their own manner. An example would be to run stages 0-4
in order for each stereo pair. Then run several sessions of stereo_tri since it is single-threaded for ISIS.

It is important to note that each of the C++ stereo executables invoked by stereo have their own command-line
options. Those options can be passed to stereo which will in turn pass them to the appropriate executable. By
invoking each executable with no options, it will display the list of options it accepts.

As explained in more detail in Section 5.1.3, each such option has the same syntax as used in stereo.default,
while being prepended by a double hyphen (--). A command line option takes precedence over the same option
specified in stereo.default. Section 14 documents all options for the individual sub-programs.

Note that the stereo tools operate only on single channel (grayscale) images. If you need to run stereo on multi-channel
images you must first convert them to grayscale or extract a single channel to operate on.

13.47 stereo_gui

The stereo_gui program is a GUI frontend to stereo, and has the same command-line options. It can display
the input images side-by-side (and in other ways, as detailed later). One can zoom in by dragging the mouse from
upper-left to lower-right, and zoom out via the reverse motion.

By pressing the Control key while dragging the mouse, regions can be selected in the input images, and then
stereo can be run on these regions from the menu via Run→Stereo. The stereo command that is invoked (with
appropriately populated parameter values for --left-image-crop-win and --right-image-crop-win
for the selected regions) will be displayed on screen, and can be re-run on a more powerful machine/cluster without
GUI access.

Additional navigation options are using the mouse wheel or the +/- keys to zoom, and the arrow keys to pan (one
should first click to bring into focus the desired image before using any keys).

Usage:

ISIS> stereo_gui [options] <images> [<cameras>] output_file_prefix
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Fig. 13.3: An illustration of stereo_gui. The stereo command will be run on the regions selected by red rectangles.

13.47.1 Use as an Image Viewer

This program can be also used as a general-purpose image viewer, case in which no stereo options or camera infor-
mation is necessary. It can display arbitrarily large images with integer, floating-point, or RGB pixels, including ISIS
.cub files and DEMs. It handles large images by building on disk pyramids of increasingly coarser subsampled images
and displaying the subsampled versions that are appropriate for the current level of zoom.

The images can be shown either side-by-side, as tiles on a grid (using --grid-cols integer), or on top of
each other (using --single-window), with a dialog to choose among them. In the last usage scenario, the option
--use-georef will overlay the images correctly if georeference information is present. It is possible to switch
among these modes once the GUI has been open, from the GUI View menu.

When the images are shown side-by-side, the GUI can zoom in all images to the same region, for easier comparison
among them.

When the images are in a single window, an individual image can be turned on or off via a checkbox. Clicking on
an image’s name will zoom to it and display it on top of other images. By right-clicking the list of images, other
operations can be performed, such as deleting an image from the view, etc.

stereo_gui can show hillshaded DEMs, either via the --hillshade option, or by choosing from the GUI View
menu the Hillshaded images option.

This program can also display the output of the ASP colormap tool (Section 13.12).

When clicking on a pixel, the pixel indices and value will be printed on screen. When selecting a region by pressing
the Control key while dragging the mouse, its bounds will be displayed on screen. If the image is geo-referenced,
the extent of the region in projected coordinates and in the longitude-latitude domain will be shown as well.

The program can also save a screenshot to disk in the BMP or XPM format.
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13.47.2 Other Functionality

View/create/move/delete/save interest point matches, GCP, and VWIP files

stereo_gui can be used to view interest point matches (*.match files), such as generated by ipmatch,
bundle_adjust, or stereo. It can also manually create and delete matches (useful in situations when auto-
matic interest point matching is unreliable due to large changes in illumination). Interest point matches can be created
or deleted with the right-mouse click. To move interest points, right click on a panel and check “Move match point”.
While this is checked you can move interest points by clicking and dragging them within the panel. Uncheck “Move
match point” to stop moving interest points.

The match file to load can be specified via --match-file. It may also be auto-detected if stereo_gui was
invoked like stereo, with an output prefix (auto-detection works only when images are not map-projected and
alignment is homography or affine epipolar). Match files can be created with the ipmatch tool or by using
stereo_pprc.

When working with N images, N-1 match files are needed to describe all of the interest points. For image i, the match
file must contain the matches from image i-1 or from image 0. You can provide these match files to stereo_gui
by conforming to its naming convention (prefix-fname1__fname2.match) or by selecting them from the GUI when
prompted. All match files must describe the same set of interest points, the tool will check the positions of loaded
points and discard any that do not correspond to the already loaded points. If one of the match files fails to load or does
not contain enough matching points, the missing points will be added to an arbitrary position and flagged as invalid.
You must either validate these points by manually moving them to the correct position or else delete them.

This tool can show the interest points from a GCP file (but cannot edit them with this interface, creating such points is
described later in this section). The --gcp-file option is used.

The stereo_gui program can also display .vwip files. Those are interest points created by ipfind,
bundle_adjust, or stereo, before they are matched across images. One should specify as many such files
as images when launching this program.

Creating GCP with a georeferenced image and a DEM

There exist situations when one has one or more images for which the camera files are either inaccurate or, for Pinhole
camera models, just the intrinsics may be known. Given a DEM of the area, and optionally a georeferenced image, it
is possible to create GCP files (Section 13.5.1) that can later be used with bundle_adjust to either improve the
alignment of these cameras to the DEM, or create new Pinhole cameras from scratch (the latter is shown in Section
9.4).

One starts by opening these desired camera images and the georeferenced image in the GUI, in this order (hence the
georeferenced image is the last). If no georeferenced image exists, one can use the given DEM instead (and it can be
hillshaded after loading to easier identify features).

Next, a feature is identified and manually added as an interest point in all open images, using the right-click menu, and
this process is repeated a few times. These newly created interest points can also be moved around by right-clicking
to turn on this mode, and then dragging them with the mouse (this can be slow).

If the input images and the georeferenced image are very similar visually, one can also try to automatically detect
interest point matches in them using ipfind/ipmatch and load the .match files as described in the earlier section
on creating interest points.

When you are finished creating interest points, use the “IP matches”->”Write GCP file” menu item to generate a
ground control point file containing the selected points. You will be prompted for the reference DEM and for the
desired output file name, unless this DEM was already specified via --dem-file upon launch and the GCP file was
already specified via --gcp-file. The last image, that is the reference, is only used to find the positions on the
ground, which in turn are used to find the heights for the GCPs from the DEM. The selected interest points from the
reference image are not saved to the GCP file.
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Creating interest point matches using map-projected images

To make it easier to create interest point matches in situations when the images are very different or taken from very
diverse perspectives, they can be first mapproject onto a DEM, as then the images look a lot more similar. Then
interest points are created among the map-projected images, when this process is more likely to succeed, and they are
transferred to the original images.

Here is an example. Given three images A.tif, B.tif, and C.tif, and a DEM named dem.tif, mapproject them
onto this DEM, obtaining the images A.map.tif, B.map.tif, and C.map.tif. Note that one should not use
--bundle-adjust-prefix in mapprojection.

Then bundle adjustment is invoked as follows, during which the transfer of interest points happens:

bundle_adjust A.tif B.tif C.tif <cameras> run/run \
--mapprojected-data 'A.map.tif B.map.tif C.map.tif dem.tif' --min-matches 0

If the mapprojected images are still too different for interest point matching among them to succeed, one can try to
bring in more images that are intermediate in appearance or illumination between the existing ones, hence bridging
the gap. Alternatively, interest point matching can be done manually in the GUI as follows:

stereo_gui A.map.tif B.map.tif C.map.tif run/run

Interest points can be picked by right-clicking on the same feature in each image, from left to right, then repeating
this process for a different feature, etc. They can be saved to disk from the menu, and the above bundle adjustment
command can be invoked.

One can then run:

stereo_gui A.tif B.tif C.tif run/run

and turn on viewing of interest point matches to study if they were unmapped the right locations.

Polygon editing and contouring

stereo_gui can be used to draw and edit polygonal shapes on top of georeferenced images, save them as shape
files (*.shp), and load such files from the command line (including ones produced with external tools). The editing
functionality can be accessed by turning on polygon editing from the Vector Layer menu, and then right-clicking
with the mouse to access the various functions.

To create polygons, click with the left mouse button on points to be added. When clicking close to the starting point,
the polygon becomes closed and a new one can be drawn.

Polygons can be saved from the right-click menu. When reading polygons and georeferenced images from disk,
choose “View as Georeferenced Images” to plot the polygons on top of the images.

Subsequently, the gdal_rasterize command can be used to keep or exclude the portion of a given image/DEM
that is within or outside the polygonal shape.

This tool can be used to find the polygonal contour at a given image threshold (which can be either set or computed
from the Threshold menu). This option is accessible from the Vector Layer menu as well, with or without the
polygon editing mode being on.
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Image threshold

stereo_gui can be used to compute an image threshold for each of a given set of images based on sampling pixels
(useful for shape-from-shading, see Section 11). This can be done by turning on from the menu the Threshold
detection mode, and then clicking on pixels in the image. The largest of the chosen pixel values will be set to the
threshold for each image and printed to the screen.

From the same menu it is possible to see or change the current threshold.

To highlight in the images the pixels at or below the image threshold, select from the menu the View thresholded
images option. Those pixels will show up in red.

Related to this, if the viewer is invoked with --nodata-value <double>, it will display pixels with values less
than or equal to this as transparent, and will set the image threshold to that no-data value.

Command line options for stereo_gui

Listed below are the options specific to stereo_gui. It will accept all other stereo options as well.

-h, --help Display this help message.

--grid-cols <integer (default: 1)> Display images as tiles on a grid with this many columns.

--window-size <integer integer (default: 1200 800)> The width and height of the GUI window in
pixels.

-w, --single-window Show all images in the same window (with a dialog to choose among them) rather
than next to each other.

--use-georef Plot the images in the projected coordinate system given by the image georefer-
ences.

--nodata-value <double (default: NaN)> Pixels with values less than or equal to this number are
treated as no-data and displayed as transparent. This overrides the no-data values
from input images.

--hillshade Interpret the input images as DEMs and hillshade them.

--hillshade-azimuth The azimuth value when showing hillshaded images.

--hillshade-elevation The elevation value when showing hillshaded images.

--view-matches Locate and display the interest point matches.

--match-file Display this match file instead of looking one up based on existing conventions
(implies --view-matches).

--gcp-file Display the GCP pixel coordinates for this GCP file (implies
--view-matches). Also save here GCP if created from the GUI.

--dem-file Use this DEM when creating GCP from images.

--hide-all Start with all images turned off (if all images are in the same window, useful with
a large number of images).

--delete-temporary-files-on-exit Delete any subsampled and other files created by the GUI when ex-
iting.

--create-image-pyramids-only Without starting the GUI, build multi-resolution pyramids for the in-
puts, to be able to load them fast later.

218 Chapter 13. Tools



Ames Stereo Pipeline Documentation, Release 3.0.0

13.48 undistort_image

The undistort_image program takes as input an image and a pinhole model .tsai file describing the image. The
tool will generate a copy of the input image with the lens distortion specified in the pinhole model file removed. It will
also save the corresponding pinhole camera model file without the distortion.

Usage:

> undistort_image [options] <input image> <camera model> -o <output image>

Command-line options for undistort_image:

-h, --help Display the help message.

-o, --output-file <filename> Specify the output file.

--output-nodata-value <double (default: smallest float value)> Set the output nodata value. Only
applicable if the output is a single-channel image with pixels that are float or
double.

--preserve-pixel-type Save the undistorted image with integer pixels if so is the input. This may result
in reduced accuracy.

--interpolation-method <bilinear|bicubic (default: bilinear)> Interpolation method.

13.49 wv_correct

An image taken by one of Digital Globe’s World View satellite cameras is formed of several blocks as tall as the
image, mosaicked from left to right, with each block coming from an individual CCD sensor [Glo]. Either due to
imperfections in the camera or in the subsequent processing, the image blocks are offset in respect to each other in
both row and column directions by a subpixel amount. These so-called CCD boundary artifacts are not visible in the
images but manifest themselves as discontinuities in the the DEMs obtained with ASP.

The tool named wv_correct is able to significantly attenuate these artifacts (see Fig. 4.2 in the Digital Globe
tutorial for an example). This tool should be used on raw Digital Globe images before calling dg_mosaic and
mapproject.

It is important to note that both the positions of the CCD offsets and the offset amounts were determined empirically
without knowledge of Digital Globe’s mosaicking process; this is why we are not able to remove these artifacts
completely.

For PAN images, the WV01 and WV02 datasets are supported, for most TDI for the forward and reverse scan direc-
tions. For WV03 PAN images, CCD artifacts are less noticeable than for WV01 and WV02, and they are not corrected
at this time.

For multispectral images, only a few select TDI are supported for band 3 of WV02 data.

If a certain combination of spacecraft/TDI is not supported, the tool will print a warning and will write on output the
uncorrected input image.

The ASP source code repository has additional documentation and tools for how to tabulate the corrections for the
cases not yet covered by this tool.

Usage:

wv_correct [options] <input image> <input camera model> <output image>

Example for PAN images:
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wv_correct pan.tif pan.xml pan_corr.tif

Example for multispectral images (first extract the third band):

gdal_translate -co TILED=YES -co COMPRESS=LZW \
-co BIGTIFF=IF_SAFER -b 3 ms.tif ms_b3.tif

wv_correct --band 3 ms_b3.tif ms.xml ms_b3_corr.tif

Example if per-column corrections are available, for either PAN or multispectral images:

wv_correct --dx dx.txt --dy dy.txt image.tif image.xml image_corr.tif

Command-line options for wv_correct:

--ot <string (default: Float32)> Output data type. Supported types: Byte, UInt16, Int16, UInt32,
Int32, Float32. If the output type is a kind of integer, values are rounded and then
clamped to the limits of that type.

--band <integer (default: 0)> For multi-spectral images, specify the band to correct. Required unless
–dx and –dy are set.

--dx <string (default: “”)> For PAN or multi-spectral images, specify the plain text file having per-
column corrections in the x direction, one per line, overriding the pre-computed
table.

--dy <string (default: “”)> As above, but for the y direction.

--print-per-column-corrections Print on standard output the per-column corrections about to apply
(for multispectral images).

-h, --help Display the help message.

--threads <integer (default: 0)> Set the number threads to use. 0 means use the default defined in the
program or in the .vwrc file.
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CHAPTER

FOURTEEN

THE STEREO.DEFAULT FILE

The stereo.default file contains configuration parameters that the stereo program uses to process images.
The stereo.default file is loaded from the current working directory when you run stereo unless you specify
a different file using the -s option. Run stereo --help for more information. The extension is not important for
this file.

A sample stereo.default.example file is included in the top-level directory of the Stereo Pipeline software
distribution.

As mentioned in Section 5.1.5, all the stereo parameters can also be specified on the command line.

Listed below are the parameters used by stereo, grouped by processing stage.

14.1 Preprocessing

14.1.1 Interest point determination

ip-per-tile How many interest points to detect in each 10242 image tile (default: automatic determination).

ip-per-image How many interest points to detect in each image (default: automatic determination, usually 5000). It
is overridden by –ip-per-tile if provided.

ip-detect-method What type of interest point detection algorithm to use for image alignment. 0 = Custom OBAloG
implementation (default), 1 = SIFT implementation from OpenCV, 2 = ORB implementation from OpenCV. If
the default method does not perform well, try out one of the other two methods.

epipolar-threshold Maximum distance in pixels from the epipolar line to search for matches for each interest point.
Due to the way ASP finds matches, reducing this value can actually increase the number of interest points
detected. If image alignment seems to be working well but you are not getting enough interest points to get a
good search range estimate, try setting this value to a small number, perhaps in the low double digits.

ip-inlier-factor (default = 1.0/15) A higher factor will result in more interest points, but perhaps also more
outliers. It is important to note that this parameter overlaps somewhat in scope and effect with
epipolar-threshold and sometimes not both are active. It is suggested to experiment with both, as well
as with ip-uniqueness-threshold below, which has a different justification but also somewhat similar
effects.

ip-uniqueness-threshold (default = 0.7) A higher threshold will result in more interest points, but perhaps less
unique ones.

ip-triangulation-max-error double When matching IP, filter out any pairs with a triangulation error higher than this.

ip-num-ransac-iterations int(=100) How many RANSAC iterations to do in interest point matching.

force-reuse-match-files Force reusing the match files even if older than the images or cameras.
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14.1.2 Image alignment

alignment-method (= affineepipolar, local_epipolar, homography, epipolar, none) (default = affineepipolar)

When alignment-method is set to local_epipolar, the images are divided into small tiles of size
--corr-tile-size expanded by a padding of --sgm-collar-size on all sides, epipolar alignment is
applied to each pair of tiles, making the stereo disparity horizontal, then a desired 1D correlation algorithm (spec-
ified via --stereo-algorithm) finds this disparity [DFMLM+14]. Then the local alignment is undone for
each disparity, the resulting disparities are merged and blended across the tiles, ASP’s subpixel refinement is
applied, if set via --subpixel-mode, the combined disparity is filtered, and triangulation is performed. This
mode works only with parallel_stereo.

When alignment-method is set to affineepipolar, stereo will attempt to pre-align the images by
detecting tie-points using feature matching, and using those to transform the images such that pairs of conjugate
epipolar lines become collinear and parallel to one of the image axes. The effect of this is equivalent to rotating
the original cameras which took the pictures.

When alignment-method is set to homography, stereo will attempt to pre-align the images by auto-
matically detecting tie-points between images using a feature matching. Tie points are stored in a *.match file
that is used to compute a linear homography transformation of the right image so that it closely matches the left
image. Note: the user may exercise more control over this process by using the ipfind and ipmatch tools.

When alignment-method is set to epipolar, stereo will apply a 3D transform to both images so that
their epipolar lines will be horizontal. This speeds of stereo correlation as it greatly reduces the area required
for searching.

Epipolar alignment is only available when calculating the stereo matches using the pinhole stereo session (i.e.
when using ``stereo -t pinhole``), and cannot be used when processing other camera types.

global-alignment-threshold (float) (default = 10) Maximum distance from inlier interest point matches to the epipo-
lar line when calculating the global affine epipolar alignment.

local-alignment-threshold (float) (default = 2) Maximum distance from inlier interest point matches to the epipolar
line when calculating the local affine epipolar alignment.

alignment-num-ransac-iterations (integer) (default = 1000) How many RANSAC iterations to use for global or
local epipolar alignment.

local-alignment-outlier-removal-params (double, double) (default = 95.0, 3.0) The differences between right and
left locally aligned interest points are computed, and outliers are removed using box-and-whisker with this
percentage and factor.

disparity-range-expansion-percent (integer) (default = 20) Expand the disparity range estimated from interest
points by this percentage before computing the stereo correlation with local epipolar alignment.

14.1.3 Other pre-processing options

force-use-entire-range (default = false) By default, the Stereo Pipeline will normalize ISIS images so that their max-
imum and minimum channel values are ±2 standard deviations from a mean value of 1.0. Use this option if you
want to disable normalization and force the raw values to pass directly to the stereo correlations algorithms.

For example, if the ISIS histeq tool has already been used to normalize the images, then use this option to
disable normalization as a (redundant) pre-processing step.

individually-normalize (default = false) By default, the maximum and minimum valid pixel value is determined by
looking at both images. Normalized with the same “global” min and max guarantees that the two images will
retain their brightness and contrast relative to each other.

This option forces each image to be normalized to its own maximum and minimum valid pixel value. This is
useful in the event that images have different and non-overlapping dynamic ranges. You can sometimes tell
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when this option is needed: after a failed stereo attempt one of the rectified images (*-L.tif and *-R.tif)
may be either mostly white or black. Activating this option may correct this problem.

Note: Photometric calibration and image normalization are steps that can and should be carried out beforehand
using ISIS’s own utilities. This provides the best possible input to the stereo pipeline and yields the best stereo
matching results.

nodata-value (default = none) Pixels with values less than or equal to this number are treated as no-data. This
overrides the nodata values from input images.

datum (default = WGS_1984) Set the datum to use with RPC camera models. Options: WGS_1984, D_MOON
(1,737,400 meters), D_MARS (3,396,190 meters), MOLA (3,396,000 meters), NAD83, WGS72, and NAD27.
Also accepted: Earth (=WGS_1984), Mars (=D_MARS), Moon (=D_MOON).

no-datum Do not assume a reliable datum exists, such as for irregularly shaped bodies.

skip-rough-homography Skip the step of performing datum-based rough homography if it fails.

left-image-crop-win xoff yoff xsize ysize Do stereo in a sub-region of the left image [default: use the entire image].

right-image-crop-win xoff yoff xsize ysize When combined with left-image-crop-win, do stereo in given
subregions of left and right images. The crop windows can be determined using stereo_gui. It is important
to note that when both of these are specified, we explicitly crop the input images to these regions, which does
not happen when left-image-crop-win alone is specified. In that case we use the full images but only
restrict the computation to the specified region.

left-image-clip: (string) (default = “”) If –left-image-crop-win is used, replaced the left image cropped to that win-
dow with this clip.

right-image-clip: (string) (default = “”) If –right-image-crop-win is used, replaced the right image cropped to that
window with this clip.

14.2 Correlation

stereo-algorithm (string) (default = “asp_bm”) Use this option to switch between the different stereo correlation
algorithms supported by ASP. Options: asp_bm, asp_sgm, asp_mgm, asp_final_mgm, mgm (original
author implementation), opencv_sgbm, libelas, msmw, msmw2, and opencv_bm. See Section 5.1.2 for
their description.

prefilter-mode (= 0,1,2) (default = 2)

This selects the pre-processing filter to be used to prepare images before they are fed to the initial-
ization stage of the pipeline.

0 - None

1 - Subtracted mean This takes a preferably large Gaussian kernel and subtracts its value from
the input image. This effectively reduces low frequency content in the image. The result is
correlation that is immune to translations in image intensity.

2 - LoG filter Takes the Laplacian of Gaussian of the image, This provides some immunity to differ-
ences in lighting conditions between a pair of images by isolating and matching on blob features
in the image.

For all of the modes above, the size of the filter kernel is determined by the prefilter-kernel-width
parameter below.

The choice of pre-processing filter must be made with thought to the cost function being used (see cost-mode,
below). LoG filter preprocessing provides good immunity to variations in lighting conditions and is usually the
recommended choice.
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prefilter-kernel-width (float) (default = 1.4) This defines the diameter of the Gaussian convolution kernel used for
the preprocessing modes 1 and 2 above. A value of 1.4 works well for LoG and 25-30 works well for Subtracted
Mean.

corr-seed-mode (=0,1,2,3) (default = 1) This integer parameter selects a strategy for how to solve for the low-
resolution integer correlation disparity, which is used to seed the full-resolution disparity later on.

0 - None Don’t calculate a low-resolution variant of the disparity image. The search range provided by
corr-search is used directly in computing the full-resolution disparity.

1 - Low-resolution disparity from stereo Calculate a low-resolution version of the disparity from the integer
correlation of subsampled left and right images. The low-resolution disparity will be used to narrow down
the search range for the full-resolution disparity.

This is a useful option despite the fact that our integer correlation implementation does indeed use a pyra-
mid approach. Our implementation cannot search infinitely into lower resolutions due to its independent
and tiled nature. This low-resolution disparity seed is a good hybrid approach.

2 - Low-resolution disparity from an input DEM Use a lower-resolution DEM together with an estimated
value for its error to compute the low-resolution disparity, which will then be used to find the full-resolution
disparity as above. These quantities can be specified via the options disparity-estimation-dem
and disparity-estimation-dem-error respectively. This option is not compatible with map
projected input images.

3 - Disparity from full-resolution images at a sparse number of points. This is an advanced option for ter-
rain having snow and no large-scale features. It is described in Section 4.4.

For large images, bigger than MOC-NA, using the low-resolution disparity seed is a definitive plus. Smaller
images such as Cassini ISS or MER images should just shut this option off to save storage space.

corr-sub-seed-percent (float) (default=0.25) When using corr-seed-mode 1, the solved-for or user-provided
search range is grown by this factor for the purpose of computing the low-resolution disparity.

min-num-ip (integer) (default = 20) Automatic search range estimation will quit if at least this many interest points
are not detected.

cost-mode (= 0,1,2,3,4) (default = 2) This defines the cost function used during integer correlation. Squared differ-
ence is the fastest cost function. However it comes at the price of not being resilient against noise. Absolute
difference is the next fastest and is a better choice. Normalized cross correlation is the slowest but is designed
to be more robust against image intensity changes and slight lighting differences. Normalized cross correlation
is about 2x slower than absolute difference and about 3x slower than squared difference. The census transform
[ZW94] and ternary census transform [HCW+16] can only be used with the SGM correlator. See Section 15.2
for details.

0 - absolute difference
1 - squared difference
2 - normalized cross correlation
3 - census transform
4 - ternary census transform

corr-kernel (integer integer) (default = 25 25) These option determine the size (in pixels) of the correlation kernel
used in the initialization step. A different size can be set in the horizontal and vertical directions, but square
correlation kernels are almost always used in practice.

corr-search (integer integer integer integer) These parameters determine the size of the initial correlation search
range. The ideal search range depends on a variety of factors ranging from how the images were pre-aligned
to the resolution and range of disparities seen in a given image pair. This search range is successively refined
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during initialization, so it is often acceptable to set a large search range that is guaranteed to contain all of the
disparities in a given image. However, setting tighter bounds on the search can sometimes reduce the number of
erroneous matches, so it can be advantageous to tune the search range for a particular data set.

If this option is not provided, stereo will make an attempt to guess its search range using interest points.

These four integers define the minimum horizontal and vertical disparity and then the maximum horizontal and
vertical disparity.

corr-search-limit (integer integer integer integer) Set these parameters to constrain the search range that stereo
automatically computes when corr-search is not set. This setting is useful when you have a good idea
of the alignment quality in the vertical direction but not in the horizontal direction. For example, when using
pinhole frame cameras with epipolar alignment the actual vertical search range may be much smaller than the
automatically computed search range.

elevation-limit (float float) Notify ASP that all elevations are expected to fall in this range relative to the datum.
Currently only used to restrict the search range estimate in nadir epipolar alignment cases.

corr-max-levels (integer) (default = 5) The maximum number of additional (lower) resolution levels to use when
performing integer correlation. Setting this value to zero just performs correlation at the native resolution.

xcorr-threshold (integer) (default = 2) Integer correlation to a limited sense performs a correlation forward and
backwards to double check its result. This is one of the first filtering steps to insure that we have indeed con-
verged to a global minimum for an individual pixel. The xcorr-threshold parameter defines an agreement
threshold in pixels between the forward and backward result.

Optionally, this parameter can be set to a negative number. This will signal the correlator to only use the forward
correlation result. This will drastically improve speed at the cost of additional noise.

min-xcorr-level (integer) (default = 0) When using the cross-correlation check controlled by xcorr-threshold, this
parameter sets the minimum pyramid resolution level that the check will be performed at. By default the check
will be performed at every resolution level but you may wish to increase this value to save time by not doubling
up on processing the largest levels.

Currently this feature is not enabled when using the default block-matching correlation method. In that case
cross correlation is only ever performed on the last resolution level.

remove-outliers-by-disparity-params (double double) (default = 100 3) Outlier removal based on the disparity of
interest points (difference between right and left pixel), when estimating the disparity search range. For example,
the 10% and 90% percentiles of disparity are computed, and this interval is made three times bigger. Interest
points whose disparity fall outside the expanded interval are removed as outliers. Instead of the default 100 and
3 one can specify pct and factor, without quotes.

rm-quantile-percentile (double) (default = 0.85) See rm-quantile-multiple for details.

rm-quantile-multiple (double) (default = -1) Used for filtering disparity values in D_sub. Disparities greater than
MULTIPLE*PERCENTILE (of the histogram) will be discarded. If this value is set greater than zero, this filter-
ing method will be used instead of the method using the values RM_MIN_MATCHES and RM_THRESHOLD.
This method will help filter out clusters of pixels which are too large to be filtered out by the neighborhood
method but that have disparities significantly greater than the rest of the image.

corr-timeout (integer) (default = 900) Correlation timeout for an image tile, in seconds.

corr-blob-filter (integer) (default = 0) Set to apply a blob filter in each level of pyramidal integer correlation. When
the correlator fails it often leaves “islands” of erroneous disparity results. Using this blob filter to remove
them cleans up the final stereo output and can even reduce processing times by preventing the correlator from
searching at large, incorrect disparity amounts. The value provided is the size of blobs in pixels that will be
removed at the full image resolution.
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corr-tile-size (integer) (default = 1024) Manually specifies the size of image tiles used by the correlator for multi-
threaded processing. Typically there is no need to adjust this value but it is very important when using semi-
global matching. See Section 15.2 for details. This value must be a multiple of 16.

sgm-collar-size (integer) (default = 512) Specify the size of a region of additional processing around each correlation
tile when using SGM or MGM processing. This helps reduce seam artifacts at tile borders when processing an
image that needs to be broken up into tiles at the cost of additional processing time. This has no effect if the
entire image can fit in one tile.

sgm-search-buffer (integer integer) (default = 4 4) This option determines the size (in pixels) searches around the
expected disparity location in successive levels of the correlation pyramid. A smaller value will decrease run
time and memory usage but will increase the chance of blunders. It is not recommended to reduce either value
below 2.

corr-memory-limit-mb (integer) (default = 6144) Restrict the amount of memory used by the correlation step to be
slightly above this value. This only really affects SGM/MGM which use a pair of large memory buffer in their
computation. The total memory usage of these buffers is compared to this limit, and if it is greater then smaller
search ranges will be used for uncertain pixels in order to reduce memory usage. If the required memory is still
over this limit then the program will error out. The unit is in megabytes.

14.3 Subpixel Refinement

subpixel-mode (integer) (default = 1) This parameter selects the subpixel correlation method. Parabola subpixel is
very fast but will produce results that are only slightly more accurate than those produced by the initialization
step. Bayes EM (mode 2) is very slow but offers the best quality. When tuning stereo.default parameters,
it is expedient to start out using parabola subpixel as a “draft mode.” When the results are looking good with
parabola subpixel, then they will look even better with subpixel mode 2. For inputs with little noise, the affine
method (subpixel mode 3) may produce results equivalent to Bayes EM in a shorter time. Phase correlation
(subpixel mode 4) is uses a frequency domain technique. It is slow and is best may not produce better results
than mode 2 but it may work well in some situations with flat terrain.

Subpixel modes 5 and 6 are experimental. Modes 7-12 are only used as part of SGM/MGM correlation. These
are much faster than subpixel modes 2-4 and if selected (with SGM/MGM) will be the only subpixel mode
performed. They interpolate between the SGM/MGM integer results and should produce reasonable values.
The default blend method for SGM/MGM is a custom algorithm that should work well but the you may find that
one of the other options is better for your data.

Subpixel modes 1-4 can be used in conjunction with SGM/MGM. In this case subpixel mode 12 will be used
first, followed by the selected subpixel mode. Depending on your data this may produce better results than using
just the SGM/MGM only methods. You may get bad artifacts combining mode 1 with SGM/MGM.

0 - no subpixel refinement
1 - parabola fitting
2 - affine adaptive window, Bayes EM weighting
3 - affine window
4 - phase correlation
5 - Lucas-Kanade method (experimental)
6 - affine adaptive window, Bayes EM with Gamma Noise Distribution (experimental)
7 - SGM None
8 - SGM linear
9 - SGM Poly4
10 - SGM Cosine
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11 - SGM Parabola
12 - SGM Blend

For a visual comparison of the quality of these subpixel modes, refer back to Section 7.

subpixel-kernel (integer integer) (default = 35 35) Specify the size of the horizontal and vertical size (in pixels) of
the subpixel correlation kernel. It is advantageous to keep this small for parabola fitting in order to resolve finer
details. However for the Bayes EM methods, keep the kernel slightly larger. Those methods weight the kernel
with a Gaussian distribution, thus the effective area is small than the kernel size defined here.

phase-subpixel-accuracy (integer) (default = 20) Set the maximum resolution of the phase subpixel correlator. The
maximum resolution is equal to 1.0 / this value. Larger values increase accuracy but also computation time.

14.4 Filtering

filter-mode (integer) (default = 1) This parameter sets the filter mode. Three modes are supported as described be-
low. Here, by neighboring pixels for a current pixel we mean those pixels within the window of half-size of
rm-half-kernel centered at the current pixel.

0 No filtering.

1 Filter by discarding pixels at which disparity differs from mean disparity of neighbors by more than
max-mean-diff.

2 Filter by discarding pixels at which percentage of neighboring disparities that are within rm-threshold of
current disparity is less than rm-min-matches.

rm-half-kernel (integer integer) (default = 5 5) This setting adjusts the behavior of an outlier rejection scheme that
“erodes” isolated regions of pixels in the disparity map that are in disagreement with their neighbors.

The two parameters determine the size of the half kernel that is used to perform the automatic removal of low
confidence pixels. A 5 × 5 half kernel would result in an 11 × 11 kernel with 121 pixels in it.

max-mean-diff (integer) (default = 3) This parameter sets the maximum difference between the current pixel dis-
parity and the mean of disparities of neighbors in order for a given disparity value to be retained (for
filter-mode 1).

rm-min-matches (integer) (default = 60) This parameter sets the percentage of neighboring disparity values that
must fall within the inlier threshold in order for a given disparity value to be retained (for filter-mode 2).

rm-threshold (double) (default = 3) This parameter sets the inlier threshold for the outlier rejection scheme. This
option works in conjunction with RM_MIN_MATCHES above. A disparity value is rejected if it differs by
more than RM_THRESHOLD disparity values from RM_MIN_MATCHES percent of pixels in the region being
considered (for filter-mode 2).

rm-cleanup-passes (integer) (default = 1) Select the number of outlier removal passes that are carried out. Each
pass will erode pixels that do not match their neighbors. One pass is usually sufficient.

median-filter-size (integer) (default = 0) Apply a median filter of the selected kernel size to the subpixel disparity
results. This option can only be used if rm-cleanup-passes is set to zero.

texture-smooth-size (integer) (default = 0) Apply an adaptive filter to smooth the disparity results inversely propor-
tional to the amount of texture present in the input image. This value sets the maximum size of the smoothing
kernel used (in pixels). This option can only be used if rm-cleanup-passes is set to zero.

texture-smooth-scale (float) (default = 0.15) Used in conjunction with texture-smooth-size, this value helps
control the regions of the image that will be smoothed. A larger value will result in more smoothing being
applied to more of the image. A smaller value will leave high-texture regions of the image unsmoothed.
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enable-fill-holes (default = false) Enable filling of holes in disparity using an inpainting method. Obsolete. It is
suggested to use instead point2dem’s analogous functionality.

fill-holes-max-size (integer) (default = 100,000) Holes with no more pixels than this number should be filled in.

edge-buffer-size (integer) (default = -1) Crop to be applied around image borders during filtering. If not set, default
to subpixel kernel size.

erode-max-size (integer) (default = 0) Isolated blobs with no more pixels than this number should be removed.

14.5 Post-Processing (Triangulation)

near-universe-radius (float) (default = 0.0)

far-universe-radius (float) (default = 0.0) These parameters can be used to remove outliers from the 3D triangulated
point cloud. The points that will be kept are those whose distance from the universe center (see below) is between
near-universe-radius and far-universe-radius, in meters.

universe-center (default = none) Defines the reference location to use when filtering the output point cloud using
the above near and far radius options. The available options are:

None Disable filtering.

Camera Use the left camera’s center as the universe center.

Zero Use the center of the planet as the universe center.

bundle-adjust-prefix (string) Use the camera adjustments obtained by previously running bundle_adjust with this
output prefix.

min-triangulation-angle (double) The minimum angle, in degrees, at which rays must meet at a triangulated point
to accept this point as valid. It must be positive. The internal default is somewhat less than 1 degree.

point-cloud-rounding-error (double) How much to round the output point cloud values, in meters (more rounding
means less precision but potentially smaller size on disk). The inverse of a power of 2 is suggested. Default:
1/210 meters (about 1mm) for Earth and proportionally less for smaller bodies.

save-double-precision-point-cloud (default = false) Save the final point cloud in double precision rather than bring-
ing the points closer to origin and saving as float (marginally more precision at twice the storage).

compute-error-vector (default = false) When writing the output point cloud, save the 3D triangulation error vector
(the vector between the closest points on the rays emanating from the two cameras), rather than just its length. In
this case, the point cloud will have 6 bands (storing the triangulation point and triangulation error vector) rather
than the usual 4. When invoking point2dem on this 6-band point cloud and specifying the --errorimage
option, the error image will contain the three components of the triangulation error vector in the North-East-
Down coordinate system.

The next several parameters are used for jitter correction for DigitalGlobe/Maxar images. A usage tutorial is
given in Section 12.1.

image-lines-per-piecewise-adjustment (integer) (default = 0) A positive value, e.g., 1000, will turn on using piece-
wise camera adjustments to help reduce jitter effects. Use one adjustment per this many image lines.

piecewise-adjustment-percentiles (float float) (default = 5 95) A narrower range will place the piecewise adjust-
ments for jitter correction closer together and further from the first and last lines in the image.

piecewise-adjustment-interp-type (integer) (default = 1) How to interpolate between adjustments. [1 Linear, 2 Us-
ing Gaussian weights]

piecewise-adjustment-camera-weight (float) (default = 1.0) The weight to use for the sum of squares of adjust-
ments component of the cost function. Increasing this value will constrain the adjustments to be smaller.
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num-matches-for-piecewise-adjustment (integer) (default = 90000) How many matches among images to create
based on the disparity for the purpose of solving for jitter using piecewise adjustment.

These last two options are used internally.

compute-piecewise-adjustments-only (default = false) Compute the piecewise adjustments as part of jitter correc-
tion, and then stop.

skip-computing-piecewise-adjustments (default = false) Skip computing the piecewise adjustments for jitter, they
should have been done by now.

14.6 Bathymetry correction options

These are options are used to infer the depth of shallow-water bodies (see Section 10.22).

14.6.1 Pre-processing stage

left-bathy-mask (string) Mask to use for the left image when doing bathymetry.

right-bathy-mask (string) Mask to use for the right image when doing bathymetry.

14.6.2 Triangulation stage

bathy-plane (string) The file storing the water plane used for bathymetry having the coefficients a, b, c, d with the
plane being a*x + b*y + c*z + d = 0.

refraction-index (double) (default = 0.0) The index of refraction of water to be used in bathymetry correction. (Must
be specified and bigger than 1.)

output-cloud-type arg (string) (default = all) When bathymetry correction is used, return only the triangulated
cloud of points where the bathymetry correction was applied (option: ‘bathy’), where it was not applied (option:
‘topo’), or the full cloud (option: ‘all’).
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CHAPTER

FIFTEEN

THE STEREO ALGORITHMS IN ASP IN DETAIL

Here we will discuss in a lot of detail ASP’s stereo algorithms. For a brief summary see Section 5.1.2. For how to add
new such algorithms, see Section 15.8.

15.1 Block-matching

Block-matching is ASP’s oldest and default algorithm. It can be invoked with both stereo and
parallel_stereo with the option:

--stereo-algorithm asp_bm

and works with any alignment method (Section 14.1.2).

For each pixel in the left image, the algorithm matches a small block around this pixel with another similar block in
the right image. The block size is given by the value of --corr-kernel. The obtained correspondence is then
refined based on the value of --subpixel-mode, using a block given by --subpixel-kernel. The option
--corr-timeout can be used to ensure long-running block matching operations are stopped after a given time.

The related block-matching algorithm in OpenCV that ASP can invoke is discussed in Section 15.7.

15.2 Semi-Global Matching and More Global Matching algorithms

ASP implements the popular Semi-Global Matching (SGM) algorithm introduced in [Hirschmuller08], and the More
Global Matching (MGM) algorithm [FDFM15], which is a modification of SGM, and usually produces higher quality
results. These should be invoked with parallel_stereo, with the option --stereo-algorithm being passed
the value asp_sgm and asp_mgm, respectively.

It is suggested to use these algorithms with --alignment-method local_epipolar, when piecewise align-
ment between left and right images is computed which results in the disparity being 1D and faster to find (Section
14.1.2).

However, the versions of SGM and MGM implemented by ASP can perform a full 2D disparity search, similar to what
is done in the NG-fSGM algorithm [XLB+16]. Since ASP processes a wide variety of cameras with varying degrees
of metadata quality, the standard assumption with SGM that the disparity search can be performed only along a one-
dimensional epipolar line does not hold when the alignment method is not local_epipolar or for map-projected
images.

The other major change is that ASP’s implementation uses a multi-resolution hierarchical search combined with a
compressed memory scheme similar to what is used in the SGM algorithm [RWFH12].

The MGM algorithm reduces the amount of high frequency artifacts in textureless regions at the cost of a longer run
time. ASP also offers the option of a hybrid SGM/MGM mode (--stereo-algorithm final_mgm) where
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MGM is used only for the final resolution level which obtains results somewhere between the pure SGM and MGM
options.

The greatest advantage of the SGM algorithm over the ASP block-matching algorithm is an improved ability to find
disparity matches in areas of repetitive or low texture. SGM can also discern finer resolution features than the standard
correlation algorithm since it tends to use much smaller matching kernels. Along with these advantages come several
disadvantages. First, SGM is computationally expensive and requires a lot of memory. Second, in some situations it
can produce noticeable artifacts at tile boundaries. Third, it can sometimes produce inaccurate results in textureless
regions. With careful parameter selection and usage these disadvantages can be mitigated.

MGM is currently limited to using 8 simultaneous threads but SGM does not have a limit.

It is suggested to use these algorithms with default options. If desired, customizations can be done as follows.

• The sgm-collar-size option can be increased from the default to allow for more padding for each tile. This
decreases the chances of seeing artifacts along tile borders but increases processing time and memory usage.
With the tiles being bigger, local alignment may be less effective.

• Set the corr-tile-size option to determine the tile size (before the padding is applied), keeping in mind
that larger tile sizes produce better results but consume more memory.

• Set the processes option keeping in mind memory constraints as discussed earlier. Each process will run one
simultaneous SGM instance and consume memory.

• The corr-memory-limit-mb parameter limits the number of megabytes of memory that can be used by
SGM/MGM. This limit is per-process. To be safe, make sure that you have more RAM available than the value
of this parameter multiplied by the number of processes.

• job-size-w and job-size-h are set equal to corr-tile-size. If the former two are explicitly set,
they should be equal to each other, and then the latter parameter will be set to the same value.

Each process spawned by parallel_stereo can use multiple threads with threads-singleprocesswithout
affecting the stereo results.

When SGM or MGM is specified, certain stereo parameters have their default values replaced with values that will
work with SGM. You can still manually specify these options.

• Cost Mode (default 4). Mean absolute distance (MAD) (cost-mode <= 2) usually does not work well. The
census transform mode (cost-mode 3) [ZW94] tends to perform better overall but can produce artifacts on
featureless terrain. The ternary census transform mode (cost-mode 4) [HCW+16] is a modification of the
census transform that is more stable on low contrast terrain but may be less accurate elsewhere.

• Kernel size. SGM kernels must always be symmetric. The SGM algorithm works with much smaller kernel
sizes than the regular integer correlator so the default large kernel is not recommended. The MAD cost mode
can be used with any odd kernel size (including size 1) but the census cost modes can only be used with kernel
sizes 3, 5, 7, and 9. Size 7 is usually a good choice.

• Xcorr-Threshold. By default, this is disabled in order to nearly halve the (long) run time of the SGM algorithm.
Set xcorr-threshold to >= 0 to turn it back on. If you set the min-xcorr-level parameter to 1 you
can perform cross correlation on the smaller resolution levels without spending the time to run it on the largest
resolution level.

• The median and texture filters in the stereo_fltr tool (defaults 3, 11, 0.13). These filters were designed
specifically to clean up output from the SGM algorithm and are especially useful in suppressing image artifacts
in low-texture portions of the image. A median filter size of 3 and a texture filter size of 11 are good starts but
the best values will depend on your input images. The texture-smooth-scale parameter will have to be
adjusted to taste, but a range of 0.13 to 0.15 is typical for icy images. These values are enabled by default and
must be manually disabled. If your images have good texture throughout it may be best to disable these filters.

• The prefilter-mode setting is ignored when using SGM.
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• The subpixel-mode If not set or set to values 7-12 SGM will perform subpixel interpolation during the
stereo correlation step and will not do additional work in the stereo refinement step. This means that after
dealing with the long SGM processing time you do not need to follow it up with a slow subpixel option! If
desired, you can specify modes 1-4 to force those subpixel operations to be performed after the default SGM
subpixel method.

Fig. 15.1: A section of a NASA IceBridge image on the left with a pair of hill-shaded DEMs to the right it showing
the difference between default ASP processing (upper right) and processing using the SGM algorithm (lower right).

Fig. 15.1 shows a comparison between two stereo modes. The DEM on the left was generated using the default stereo
parameters and --subpixel-mode 3. The DEM on the right was generated using the command:

stereo --stereo-algorithm asp_sgm --threads 1 --xcorr-threshold -1 \
--corr-kernel 7 7 --corr-tile-size 6400 --cost-mode 4 \
--median-filter-size 3 --texture-smooth-size 13 \
--texture-smooth-scale 0.13

Some grid pattern noise is visible in the image produced using SGM. Using --stereo-algorithm asp_mgm
should reduce it. And, as mentioned earlier, for large images which won’t fit in memory, --corr-tile-size can
be set to a value like 4096, and parallel_stereo should be used.
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15.3 Original implementation of MGM

ASP ships the MGM algorithm as implemented by its authors ([FDFM15]) at:

https://github.com/gfacciol/mgm

That program is released under the AGPL license. We do not link to it directly, rather it is called as a separate process
from stereo_corr, avoiding license compatibility issues.

To use it, run:

parallel_stereo --alignment-method local_epipolar \
--stereo-algorithm mgm \
--corr-tile-size 1024 --sgm-collar-size 512 \
left.tif right.tif left.xml right.xml

In this mode, locally aligned portions of the input left and right images are saved to disk, the MGM program (named
mgm) is called for each such pair, it writes the computed disparity back to disk, which is then ingested by ASP.

To be more specific, a global affine epipolar alignment of the left and right images is computed first, then the aligned
images are broken up into tiles, with each tile being by default 1024 x 1024 pixels with a 512 pixel padding (hence
the total tile size is 2048 x 2048), local epipolar alignment is computed for each tile, the combination of the global
and subsequent local alignment is applied to each original image to get the locally aligned image tiles, and those are
written to disk, to be passed to mgm.

The mgm program has its own options. Some are environmental variables, to be set before the tool is called, such
as CENSUS_NCC_WIN=5, while others are passed to the mgm executable on the command line, for example, -t
census. To communicate any such options to this program, invoke parallel_stereo (for example) with:

--stereo-algorithm 'mgm CENSUS_NCC_WIN=5 -t census'

ASP will ensure these will be passed correctly to mgm. By default, ASP uses:

MEDIAN=1 CENSUS_NCC_WIN=5 USE_TRUNCATED_LINEAR_POTENTIALS=1 TSGM=3 \
-s vfit -t census -O 8

These are adjusted depending on which ones the user chooses to override.

The CENSUS_NCC_WIN parameter is is one of the more notable parameters, as it determines the size of the window
to use for correlation, so it corresponds to the option --corr-kernel of ASP-implemented algorithms.

ASP automatically finds the minimum and maximum estimated disparity, and it passes it to mgm via the -r and -R
switches.

15.3.1 Options for mgm

-r (default = -30): Minimum horizontal disparity value. (The images are assumed to be rectified, which eliminates
the vertical disparity.)

-R (default = 30): Maximum horizontal disparity value.

-O (default = 4): Number of search directions. Options: 2, 4, 8, 16.

-P1 (default = 8) SGM regularization parameter P1.

-P2 (default = 32): SGM regularization parameter P2.

-p (default = none): Prefilter algorithm. Options: none, census, sobelx, gblur. The census mode uses the window
of dimensions CENSUS_NCC_WIN.
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-t (default = ad): Distance function. Options: census, ad, sd, ncc, btad, btsd. For ncc the window of dimensions
CENSUS_NCC_WIN is used. The bt option is the Birchfield-Tomasi distance.

-truncDist (default = inf): Truncate distances at nch * truncDist.

-s (default = none): Subpixel refinement algorithm. Options: none, vfit, parabola, cubic.

-aP1 (default = 1): Multiplier factor of P1 when sum |I1 - I2|^2 < nch * aThresh^2.

-aP2 (default = 1): Multiplier factor of P2 as above.

-aThresh (default = 5): Threshold for the multiplier factors.

-m FILE (default = none): A file with minimum input disparity.

-M FILE (default = none): A file with maximum input disparity.

-l FILE (default = none): Write here the disparity without the left-to-right test.

15.3.2 Environmental variables for mgm

These should be set on the command line before mgm is invoked. (ASP does that automatically.)

CENSUS_NCC_WIN=3: Size of the window for the census prefilter algorithm and NCC (normalized cross-
correlation).

TESTLRRL=1: If 1, do left-to-right and right-to-left consistency checks.

MEDIAN=0: Radius of the median filter post-processing.

TSGM=4: Regularity level.

TSGM_ITER=1: Number of iterations.

TSGM_FIX_OVERCOUNT=1: If 1, fix overcounting of the data term in the energy.

TSGM_DEBUG=0: If 1, print debug information.

TSGM_2LMIN=0: Use the improved TSGM cost only for TSGM=2. Overrides the TSGM value.

USE_TRUNCATED_LINEAR_POTENTIALS=0: If 1, use the Felzenszwalb-Huttenlocher truncated linear poten-
tial. Then P1 and P2 change meaning. The potential they describe becomes V(p,q) = min(P2, P1*|p-q|).

15.4 OpenCV SGBM

The parallel_stereo program can invoke the OpenCV semi-global block-matching algorithm (SGBM) if called
with:

--alignment-method local_epipolar \
--stereo-algorithm "opencv_sgbm"

Alternatively, the full string having this algorithm and its options can be used, as:

--alignment-method local_epipolar \
--stereo-algorithm \

"opencv_sgbm -mode sgbm -block_size 3 -P1 8 -P2 32
-prefilter_cap 63 -uniqueness_ratio 10 -speckle_size 100
-speckle_range 32 -disp12_diff 1"

If an invocation as follows is used:
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--alignment-method local_epipolar \
--stereo-algorithm "opencv_sgbm -block_size 7"

ASP will use the earlier values for all the options except -block_size which will be set to 7. Hence, the user can
explicitly specify options whose values are desired to be different than the default choices.

15.4.1 SGBM options

-mode (default = sgbm): Choose among several flavors of SGBM. Use sgbm for the less-memory intensive mode.
Setting this mode to hh will run the full-scale two-pass dynamic programming algorithm. It will consume
O(image_width * image_height * num_disparities) bytes of memory, and may run out of memory for a large
input disparity range. Use 3way for yet another flavor which OpenCV does not document.

-block_size (default = 3): Block size to use to match blocks from left to right image. It must be an odd number >=1.
Normally, it should be somewhere in the 3 - 11 range.

-P1 (default = 8): Multiplier for the first parameter controlling the disparity smoothness. This parameter is used for
the case of slanted surfaces. This is multiplied by num_image_channels block_size * block_size, and ASP uses
num_image_channels = 1. It is used as the penalty on the disparity change by plus or minus 1 between neighbor
pixels.

-P2 (default = 32): Multiplier for the second parameter controlling the disparity smoothness. This is multiplied by
num_image_channels block_size * block_size, and ASP uses num_image_channels = 1. This parameter is used
for “solving” the depth discontinuities problem. The larger the values are, the smoother the disparity is. This
parameter is the penalty on the disparity change by more than 1 between neighbor pixels. The algorithm requires
P2 > P1.

-disp12_diff (default = 1): Maximum allowed difference (in integer pixel units) in the left-to-right vs right-to-left
disparity check. Set it to a non-positive value to disable the check.

-prefilter_cap (default = 63): Truncation value for the prefiltered image pixels. The algorithm first computes the x-
derivative at each pixel and clips its value by [-prefilter_cap, prefilter_cap] interval. The result values are passed
to the Birchfield-Tomasi pixel cost function.

-uniqueness_ratio (default = 10): Margin in percentage by which the best (minimum) computed cost function value
should “win” the second best value to consider the found match correct. Normally, a value within the 5 - 15
range is good enough.

-speckle_size (default = 100): Maximum size of smooth disparity regions to consider their noise speckles and inval-
idate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the 50 - 200 range.

-speckle_range (default = 32): Maximum disparity variation within each connected component. If you do speckle
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. Normally, 1 or 2 is good
enough.

15.5 LIBELAS stereo algorithm

ASP ships and can invoke the LIBELAS (Library for Efficient Large-scale Stereo Matching) algorithm [GRU10],
described at:

http://www.cvlibs.net/software/libelas/

We implemented an interface around this library to overcome its assumption of the disparity being always positive,
and added other minor changes. Our fork having these additions is at:
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https://github.com/NeoGeographyToolkit/libelas

This software is released under GPL. ASP does not link to it directly, rather it gets invoked as via a system call, with
its inputs and outputs being on disk.

To invoke it, run:

parallel_stereo --alignment-method local_epipolar \
--stereo-algorithm libelas \
<other options>

If desired to override the values of any of its parameters, those can be passed as follows:

--stereo-algorithm "libelas -ipol_gap_width 100"

(This particular parameter is used to fill holes in the disparity, with a larger value resulting in bigger holes being filled.)

The algorithm options, and their defaults, as used by ASP, are as follows.

-disp_min (default = 0): Minimum disparity (ASP estimates this unless the user overrides it).

-disp_max (default = 255): Maximum disparity (ASP estimates this unless the user overrides it).

-support_threshold (default = 0.85): Maximum uniqueness ratio (best vs. second-best support match).

-support_texture (default = 10): Minimum texture for support points.

-candidate_stepsize (default = 5): Step size of regular grid on which support points are matched.

-incon_window_size (default = 5): Window size of inconsistent support point check.

-incon_threshold (default = 5): Disparity similarity threshold for support point to be considered consistent.

-incon_min_support (default = 5): Minimum number of consistent support points.

-add_corners (default = 0): Add support points at image corners with nearest neighbor disparities.

-grid_size (default = 20): Size of neighborhood for additional support point extrapolation.

-beta (default = 0.02): Image likelihood parameter.

-gamma (default = 3): Prior constant.

-sigma (default = 1): Prior sigma.

-sradius (default = 2): Prior sigma radius.

-match_texture (default = 1): Minimum texture for dense matching.

-lr_threshold (default = 2): Disparity threshold for left-right consistency check.

-speckle_sim_threshold (default = 1): Similarity threshold for speckle segmentation.

-speckle_size (default = 200): Speckles larger than this get removed.

-ipol_gap_width (default = 3): Fill holes in disparity of height and width at most this value.

-filter_median (default = 0): If non-zero, use an approximate median filter.

-filter_adaptive_mean (default = 1): If non-zero, use an approximate adaptive mean filter.

-postprocess_only_left (default = 0): If non-zero, saves time by not postprocessing the right image.

-verbose (default = 0): If non-zero, print some information about the values of the options being used, as well as
what the input and output files are.

15.5. LIBELAS stereo algorithm 237



Ames Stereo Pipeline Documentation, Release 3.0.0

-debug_images (default = 0): If non-zero, save the images to disk right before being passed to libelas (the images
are thus padded, aligned, and scaled to have byte pixels).

15.6 Multi-Scale Multi-Window stereo matching

ASP provides access to the Multi-Scale Multi-Window (MSMW) stereo matching algorithm [BF15], by in-
voking its two implementations msmw and msmw2 from:

https://github.com/centreborelli/s2p

(see the 3rdparty directory). While that repository is released under the AGPL-3.0 license and ASP is under the
more permissive Apache II license, ASP invokes that functionality as an external program via a system call, so its
license does not conflict with ours.

15.6.1 Options for msmw

To invoke the msmw algorithm, run parallel_stereo with the option:

--alignment-method local_epipolar \
--stereo-algorithm msmw

By default, ASP invokes this program as if it is called with:

--stereo-algorithm "msmw -i 1 -n 4 -p 4 -W 5 -x 9 -y 9 -r 1
-d 1 -t -1 -s 0 -b 0 -o 0.25 -f 0 -P 32"

In addition ASP, automatically calculates and passes to msmw values for the -m and -M options which correspond to
estimated minimum and maximum disparity values.

Any options explicitly specified by the user, such as:

--stereo-algorithm "msmw -x 7 -y 7"

are substituted in the earlier string before ASP invokes this tool.

The meaning of these switches is as follows.

-m: Minimum disparity.

-M: Maximum disparity.

-x (default = 0): Width of the window (block) to match from the left to right image. Must be set to a positive odd
value.

-y (default = 0): Matching window height. Must be set to a positive odd value.

-w (default = 0): Flag for weighting window.

-W (default = 5): Flag for using windows as lists (5x5 windows only). A non-zero value indicates how many of the
orientations should be considered. (Note: Not sure what all this means.)

-i (default = 1): Type of distance.

-p (default = 1): Number of precisions for single scale.

-P (default = 1): Factor of disparity refinement by cubic interpolation.

-n (default = 3): Number of scales.
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-f (default = 0): Standard deviation noise.

-r (default = 0): Reciprocity value.

-g (default = 0): Subpixel reciprocity flag.

-R (default = 0): Dual reciprocity value.

-l (default = 0): Inverse reciprocity value.

-d (default = 0): Mindist value.

-t (default = 0): Mindist dilatation.

-s (default = 0): Self-similarity value.

-b (default = 0): Integral of derivatives.

-v (default = 0): Variance value.

-o (default = 0): Remove isolated flag.

-O (default = 0): Remove isolated grain (number pixels).

-C (default = -1): Filter using the cost, train removing a fraction of the accepted points (e.g. 0.05).

-a (default = 0): Use Laplacian of the image instead of the image itself.

15.6.2 Options for msmw2

This flavor of the MSMW algorithm is called analogously, with:

--stereo-algorithm msmw2

ASP fills in its options as if it is called as:

--stereo-algorithm "msmw2 -i 1 -n 4 -p 4 -W 5 -x 9 -y 9
-r 1 -d 1 -t -1 -s 0 -b 0 -o -0.25 -f 0 -P 32 -D 0 -O 25 -c 0"

As earlier, any of these can be overridden. Compared to msmw this tool has the additional options:

-D (default = 0): Regression mindist.

-c (default = 0): Combine last scale with the previous one to densify the result.

15.7 OpenCV BM

The simpler and not as performing block-matching (BM) algorithm of OpenCV can be invoked in a very similar
manner to OpenCV’s SGBM (Section 15.4), with the algorithm name passed to --stereo-algorithm being
opencv_bm. It accepts the same parameters except -P1 and -P2, and uses in addition the option:

-texture_thresh (default = 10): The disparity is only computed for pixels whose “texture” measure is no less than
this value. Hence lowering this will result in the disparity being computed at more pixels but it may be more
erroneous.

The full default string of options that is used by --stereo-algorithm is:

"opencv_bm -block_size 21 -texture_thresh 10 -prefilter_cap 31
-uniqueness_ratio 15 -speckle_size 100 -speckle_range 32
-disp12_diff 1"
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and any of these can be modified as for the SGBM algorithm. Notice how the BM algorithm has to use a bigger block
size than SGBM.

15.8 Adding new algorithms to ASP

ASP makes it possible for anybody to add their own algorithm to be used for stereo correlation without having to
recompile ASP itself.

Any such algorithm must a be program to be invoked as:

myprog <options> left_image.tif right_image.tif \
output_disparity.tif

Here, as often assumed in the computer vision community, the input images left_image.tif and
right_image.tif are expected to be small image clips with epipolar alignment applied to them so that the epipo-
lar lines are horizontal and the resulting disparity only need to be searched in the x direction (along each row). The
images must have the same size. (ASP will take care of preparing these images.)

The images must be in the TIF format, with pixel values being of the float type, and no-data pixels being set to
NaN. The output disparity is expected to satisfy the same assumptions and be of dimensions equal to those of the input
images.

The options passed to this program are expected to have no other characters except letters, numbers, space, period,
underscore, plus, minus, and equal signs.

Such a program and the libraries it depends on (if any) should be copied somewhere within ASP’s top-level directory,
then this program should be registered with ASP by adding a line to the file:

plugins/stereo/plugin_list.txt

in that directory, in the format:

myprog plugins/stereo/myprog/bin/myprog plugin/stereo/myprog/lib

The entries here are the program name (in lowercase), path to the program, and path to any libraries apart from those
shipped with ASP (the last entry is optional). All paths are relative to the ASP top-level directory.

Then, ASP can invoke this program by calling it, for example, as:

parallel_stereo --alignment-method local_epipolar \
--stereo-algorithm "myprog <options>" \
<images> <cameras> <output prefix>

The program will be called for each pair of locally aligned tiles obtained from these input images, with one subdirectory
for each such pair of inputs. That subdirectory will also have the output disparity produced by the program. All such
disparities will be read back by ASP, blended together, then ASP will continue with the steps of disparity filtering and
triangulation.

It may be helpful to visit one of such subdirectories, examine the stereo_corr log file which will show how
precisely the program was called, and also look at its input image tiles and output disparity stored there.
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GUIDE TO OUTPUT FILES

The stereo tool generates a variety of intermediate files that are useful for debugging. These are listed below, along
with brief descriptions about the contents of each file. Note that the prefix of the filename for all of these files is
dictated by the final command line argument to stereo. Run stereo --help for details.

*.vwip - image feature files If alignment-method is not none, the Stereo Pipeline will automatically search for
image features to use for tie-points. Raw image features are stored in *.vwip files; one per input image. For
example, if your images are left.cub and right.cub you’ll get left.vwip and right.vwip. Note:
these files can also be generated by hand (and with finer grained control over detection algorithm options) using
the ipfind utility.

*.match - image to image tie-points The match file lists a select group of unique points out of the previous .vwip
files that have been identified and matched in a pair of images. For example, if your images are left.cub and
right.cub you’ll get a left__right.match file.

The .vwip and .match files are meant to serve as cached tie-point information, and they help speed up the
pre-processing phase of the Stereo Pipeline: if these files exist then the stereo program will skip over the
interest point alignment stage and instead use the cached tie-points contained in the *.match files. In the rare
case that one of these files did get corrupted or your input images have changed, you may want to delete these
files and allow stereo to regenerate them automatically. This is also recommended if you have upgraded the
Stereo Pipeline software.

Both .vwip and .match files can be visualized in stereo_gui.

*-L.tif - rectified left input image The left input image of the stereo pair, saved after the pre-processing step. This
image may be normalized, but should otherwise be identical to the original left input image.

*-R.tif - rectified right input image Right input image of the stereo pair, after the pre-processing step. This image
may be normalized and possibly translated, scaled, and/or rotated to roughly align it with the left image, but
should otherwise be identical to the original right input image.

*-lMask.tif - mask for left rectified image This file and *-rMask.tif contain binary masks for the input images. They
are used throughout the stereo process to mask out pixels where there is no input data.

*-rMask.tif - mask for right rectified image See *-lMask.tif, above.

*-align-L.exr - left pre-alignment matrix The 3 × 3 affine transformation matrices that are used to warp the left and
right images to roughly align them. This file and *-align-R.exr are only generated if alignment-method is
not none in the stereo.default file. Normally, a single transform is enough to warp one image to another
(for example, the right image to the left). The reason we use two transforms is the following: after the right
image is warped to the left, we would like to additionally transform both images so that the origin (0, 0) in the
left image would correspond to the same location in the right image. This will somewhat improve the efficiency
of subsequent processing.

*-align-R.exr - right pre-alignment matrix See *-align-L.exr, above.
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*-D.tif - disparity map after the disparity map initialization phase This is the disparity map generated by the cor-
relation algorithm in the initialization phase. It contains integer values of disparity that are used to seed the
subsequent sub-pixel correlation phase. It is largely unfiltered, and may contain some bad matches.

Disparity map files are stored in OpenEXR format as 3-channel, 32-bit floating point images. (Channel 0 =
horizontal disparity, Channel 1 = vertical disparity, and Channel 2 = good pixel mask)

*-RD.tif - disparity map after sub-pixel correlation This file contains the disparity map after sub-pixel refinement.
Pixel values now have sub-pixel precision, and some outliers have been rejected by the sub-pixel matching
process.

*-F-corrected.tif - intermediate data product Only created when alignment-method is not none. This is
*-F.tif with effects of interest point alignment removed.

*-F.tif - filtered disparity map The filtered, sub-pixel disparity map with outliers removed (and holes filled with the
inpainting algorithm if FILL_HOLES is on). This is the final version of the disparity map.

*-GoodPixelMap.tif - map of good pixels An image showing which pixels were matched by the stereo correlator
(gray pixels), and which were filled in by the hole filling algorithm (red pixels).

*-PC.tif - point cloud image The point cloud image is generated by the triangulation phase of Stereo Pipeline. Each
pixel in the point cloud image corresponds to a pixel in the left input image (*-L.tif). The point cloud has four
channels, the first three are the Cartesian coordinates of each point, and the last one has the intersection error
of the two rays which created that point (the intersection error is the closest distance between rays). By default,
the origin of the Cartesian coordinate system being used is a point in the neighborhood of the point cloud. This
makes the values of the points in the cloud relatively small, and we save them in single precision (32 bits).
This origin is saved in the point cloud as well using the tag POINT_OFFSET in the GeoTiff header. To output
point clouds using double precision with the origin at the planet center, call stereo_tri with the option
--save-double-precision-point-cloud. This can effectively double the size of the point cloud.

All these images that are single-band can be visualized in stereo_gui (Section 13.47). The disparities can
be first split into the individual horizontal and vertical disparity files using disparitydebug, then they can
be seen in this viewer as well.

If the input images are map-projected (georeferenced) and the alignment method is none, all the output images
listed above, will also be georeferenced, and hence can be overlayed in stereo_gui on top of the input images
(the outputs of disparitydebug will then be georeferenced as well).

The point cloud file saves the datum (and projection if available) inferred from the input images, regardless of
whether these images are map-projected or not.

The point2mesh and point2dem programs can be used to convert the point cloud to formats that are easier
to visualize.

*-stereo.default - backup of the Stereo Pipeline settings file This is a copy of the stereo.default file used by
stereo. It is stored alongside the output products as a record of the settings that were used for this particular
stereo processing task.
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Ames Stereo Pipeline supports a generic Pinhole camera model with several lens distortion models which cover com-
mon calibration methods, and also the somewhat more complicated panoramic (optical bar) camera model.

17.1 Pinhole Models

17.2 Overview

The generic Pinhole model uses the following parameters:

• fu = The focal length in horizontal pixel units.

• fv = The focal length in vertical pixel units.

• cu = The horizontal offset of the principal point of the camera in the image plane in pixel units, from 0,0.

• cv = The vertical offset of the principal point of the camera in the image plane in pixel units, from 0,0.

• pitch = The size of each pixel in the units used to specify the four parameters listed above. This will usually
either be 1.0 if they are specified in pixel units or alternately the size of a pixel in millimeters.

The focal length is sometimes known as the principal distance. The value cu is usually approximately half the image
width in pixels times the pitch, while cv is often the image height in pixels times the pitch, though there are situations
when these can be quite different.

A few sample Pinhole models are shown later in the text. The underlying mathematical model is described in Section
17.2.2.

Along with the basic Pinhole camera parameters, a lens distortion model can be added. Note that the units used in the
distortion model must match the units used for the parameters listed above. For example, if the camera calibration was
performed using units of millimeters the focal lengths etc. must be given in units of millimeters and the pitch must be
equal to the size of each pixel in millimeters. The following lens distortion models are currently supported:

• Null = A placeholder model that applies no distortion.

• Tsai = A common distortion model [Tsai87] similar to the one used by OpenCV and THEIA. This model uses
the following parameters:

K1, K2 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.
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The following equations describe the distortion, starting with the undistorted pixel (Px, Py), note that this
model uses normalized pixel units.

(x, y) =

(
Px− cu
fu

,
Py − cv
fv

)
r2 = x2 + y2

x(distorted) = x

(
K1r

2 +K2r
4 + 2P1y + P2

(
r2

x
+ 2x

))
y(distorted) = y

(
K1r

2 +K2r
4 + 2P2x+ P1

(
r2

y
+ 2y

))
• Adjustable Tsai = A variant of the Tsai model where any number of K terms and a skew term (alpha) can be

used. Can apply the AgiSoft Lens calibration parameters.

• Brown-Conrady = An older model based on a centering angle [Bro66][Bro71].

This model uses the following parameters:

K1, K2, K3 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.

xp, yp = Principal point offset.

phi = Tangential distortion angle in radians.

The following equations describe the distortion, note that this model uses non-normalized pixel units, so they
are in mm:

x = x(distorted)− xp
y = y(distorted)− yp

r2 = x2 + y2

dr = K1r
3 +K2r

5 +K3r
7

x(undistorted) = x+ x
dr

r
− (P1r

2 + P2r
4) sin(phi)

y(undistorted) = y + y
dr

r
+ (P1r

2 + P2r
4) cos(phi)

• Photometrix = A model matching the conventions used by the Australis software from Photometrix.

K1, K2, K3 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.

xp, yp = Principal point offset.

B1, B2 = Unused parameters.

The following equations describe the distortion, note that this model uses non-normalized pixel units, so they
are in mm.

x = x(distorted)− xp
y = y(distorted)− yp

r2 = x2 + y2

dr = K1r
3 +K2r

5 +K3r
7

x(undistorted) = x+ x
dr

r
+ P1(r

2 + 2x2) + 2P2xy

y(undistorted) = y + y
dr

r
+ P2(r

2 + 2y2) + 2P1xy
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• RPC = A rational polynomial coefficient model.

In this model, one goes from distorted coordinates (x, y) to undistorted coordinates via the formula

x(undistorted) =
P1(x, y)

Q1(x, y)

y(undistorted) =
P2(x, y)

Q2(x, y)

The functions in the numerator and denominator are polynomials in x and y with certain coefficients. The degree of
polynomials can be any positive integer.

RPC distortion models can be generated as approximations to other pre-existing models with the tool
convert_pinhole_model (Section 13.13).

This tool also creates RPC to speed up the reverse operation, of going from undistorted to distorted pixels, and those
polynomial coefficients are also saved as part of the model.

17.2.1 File Formats

ASP Pinhole model files are written in an easy to work with plain text format using the extension .tsai. A sample
file is shown below.

VERSION_4
PINHOLE
fu = 28.429
fv = 28.429
cu = 17.9712
cv = 11.9808
u_direction = 1 0 0
v_direction = 0 1 0
w_direction = 0 0 1
C = 266.943 -105.583 -2.14189
R = 0.0825447 0.996303 -0.0238243 -0.996008 0.0832884 0.0321213 0.0339869 0.0210777 0.
↪→9992
pitch = 0.0064
Photometrix
xp = 0.004
yp = -0.191
k1 = 1.31024e-04
k2 = -2.05354e-07
k3 = -5.28558e-011
p1 = 7.2359e-006
p2 = 2.2656e-006
b1 = 0.0
b2 = 0.0

The first half of the file is the same for all Pinhole models:

• VERSION_X = A header line used to track the format of the file.

• PINHOLE = The type of camera model, so that other types can be stored with the .tsai extension.

• fu, fv, cu, cv = The first four intrinsic parameters described in the previous section.

• u, v, and w_direction = These lines allow an additional permutation of the axes of the camera coor-
dinates. By default, the positive column direction aligns with x, the positive row direction aligns with y, and
downward into the image aligns with z.
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• C = The location of the camera center, usually in the geocentric coordinate system (GCC/ECEF).

• R = The rotation matrix describing the camera’s absolute pose in the coordinate system (Section 17.2.2).

• pitch = The pitch intrinsic parameter described in the previous section.

The second half of the file describes the lens distortion model being used. The name of the distortion model appears
first, followed by a list of the parameters for that model. The number of parameters may be different for each distortion
type. Samples of each format are shown below:

• Null

NULL

• Tsai

TSAI
k1 = 1.31024e-04
k2 = -2.05354e-07
p1 = 0.5
p2 = 0.4

• Adjustable Tsai

AdjustableTSAI
Radial Coeff: Vector3(1.31024e-04, 1.31024e-07, 1.31024e-08)
Tangential Coeff: Vector2(-2.05354e-07, 1.05354e-07)
Alpha: 0.4

• Brown-Conrady

BrownConrady
xp = 0.5
yp = 0.4
k1 = 1.31024e-04
k2 = -2.05354e-07
k3 = 1.31024e-08
p1 = 0.5
p2 = 0.4
phi = 0.001

• Photometrix

Photometrix
xp = 0.004
yp = -0.191
k1 = 1.31024e-04
k2 = -2.05354e-07
k3 = -5.28558e-011
p1 = 7.2359e-006
p2 = 2.2656e-006
b1 = 0.0
b2 = 0.0

• RPC

RPC
rpc_degree = 1
image_size = 5760 3840
distortion_num_x = 0 1 0
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distortion_den_x = 1 0 0
distortion_num_y = 0 0 1
distortion_den_y = 1 0 0
undistortion_num_x = 0 1 0
undistortion_den_x = 1 0 0
undistortion_num_y = 0 0 1
undistortion_den_y = 1 0 0

This sample RPC lens distortion model represents the case of no distortion, when the degree of the polynomials
is 1, and both the distortion and undistortion formula leave the pixels unchanged, that is, the distortion transform
is

(x, y)→ (x, y) =

(
0 + 1 · x+ 0 · y
1 + 0 · x+ 0 · y

,
0 + 0 · x+ 1 · y)
1 + 0 · x+ 0 · y

)
.

In general, if the degree of the polynomials is n, there are 2(n + 1)(n + 2) coefficients. The zero-th degree
coefficients in the denominator are always set to 1.

For several years Ames Stereo Pipeline generated Pinhole files in the binary .pinhole format. That format is no
longer supported.

Also in the past Ames Stereo Pipeline has generated a shorter version of the current file format, also with the extension
.tsai, which only supported the TSAI lens distortion model. Existing files in that format can still be used by ASP.

Note that the orbitviz tool can be useful for checking the formatting of .tsai files you create and to estimate
the position and orientation. To inspect the orientation use the optional .dae model file input option and observe the
rotation of the 3D model.

17.2.2 How the Pinhole model is applied

As mentioned in Section 17.2.1, the ASP Pinhole models store the focal length as fu and fv, the optical center (cu, cv)
(which is the pixel location at which the ray coming from the center of the camera is perpendicular to the image plane,
in units of the pixel pitch), the vector C which is the camera center in world coordinates system, and the matrix R that
is the transform from camera to world coordinates.

To go in more detail, a point Q in the camera coordinate system gets transformed to a point P in the world coordinate
system via:

P = RQ+ C

Hence, to go from world to camera coordinates one does:

Q = R−1P −R−1C

From here the pixel location is computed as:

1

p

(
fu
Q1

Q3
+ cu, fv

Q2

Q3
+ cv

)
where p is the pixel pitch.
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17.3 Panoramic Camera Model

ASP also supports a simple panoramic/optical bar camera model for use with images such as the declassified Corona
KH4 and Keyhole KH9 images. It implements the model from [SCS03] with the motion compensation from [SKY04].

Such a model looks as follows:

VERSION_4
OPTICAL_BAR
image_size = 110507 7904
image_center = 55253.5 3952
pitch = 7.0e-06
f = 0.61000001430511475
scan_time = 0.5
forward_tilt = -0.261799
iC = -1047140.9611702315 5508464.4323527571 3340425.4078937685
iR = -0.96635634448923746 -0.16918164442572045 0.1937343197650008 -0.
↪→23427205529446918 0.26804084264169648 -0.93448954557235941 0.10616976770014927 -0.
↪→94843643849513648 -0.29865750042675621
speed = 7700
mean_earth_radius = 6371000
mean_surface_elevation = 4000
motion_compensation_factor = 1.0
scan_dir = left

Here, the image size and center are given in pixels, with the width followed by the height. The pixel pitch and
focal length f are in meters. The scan time is seconds, the forward tilt is in radians, the speed is in meters per
second, and the Earth radius and mean surface elevation are in meters. The initial camera center iC is in meters,
and the rotation matrix iR stores the absolute pose. scan_dir must be set to ’left’ or ’right’. scan_dir and
use_motion_compensation control how the sensor model accounts accounts for the motion of the satellite
during the image scan. Without the benefit of detailed historical documents it may require experimentation to find the
good initial values for these cameras. When using bundle_adjust, the intrinsic parameters that are solved for are
speed, motion_compensation_factor, and scan_time.
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CHAPTER

NINETEEN

NEWS AND DEVELOPMENT HISTORY

19.1 RELEASE 3.0.0, July 27, 2021

New functionality:

• Added new stereo algorithms: MGM (original author implementation), OpenCV SGBM, LIBELAS,
MSMW, MSMW2, and OpenCV BM to complement the existing ASP block matching, SGM, and MGM
algorithms. See https://stereopipeline.readthedocs.io/en/latest/next_steps.html for usage. These will be
further refined in subsequent releases.

• Added the ability to perform piecewise local epipolar alignment for the input images, to be followed by
a 1D disparity search (for non-mapprojected images), as suggested by the Satellite Stereo Pipeline (S2P)
approach. This is still somewhat experimental.

• Added the ability for a user to plug into ASP any desired stereo program working on image clips to
which epipolar alignment has been applied (as is customary in the computer vision community) without
rebuilding ASP.

• Added support for shallow-water bathymetry, so creation of terrain models with correct depth determina-
tion for well-resolved areas under shallow water. To be used with dg, rpc, and nadirpinhole cameras.

• Added two supporting tools for this: bathy_plane_calc and bathy_threshold_calc.py.

• Added CCD artifact corrections for a few WV02 band 3 multispectral images. Apart from the systematic
artifacts corrected by this logic, these images have a high-frequency unique pattern, and also jitter, which
are not corrected for. Also added tools and documentation to easily tabulate more multispectral bands and
TDI.

isis:

• Upgraded to ISIS 5.0.1.

• Ship a full Python 3.6 runtime, as expected by ISIS.

csm:

• Upgraded to USGSCSM 1.5.2 (ASP’s own build of it has an additional bugfix for LRO NAC not present
in the conda-forge package).

• Validated the CSM model for CTX, HiRISE, and LRO NAC cameras.

• Added documentation for how to create CSM models from .cub cameras.

• Export the state of a CSM camera after bundle adjustment and pc_align (only for linescan cameras sup-
ported by ISIS).

parallel_stereo

• Will now throw an error if –threads is passed in, whose behavior was not defined.
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• Bugifx for Python 3.

bundle_adjust:

• Added the option –heights-from-dem-robust-threshold.

• Added the option –save-intermediate-cameras to save the cameras at each iteration.

• Added the option –match-first-to-last to match the first several images to several last images by extending
the logic of –overlap-limit past the last image to the earliest ones.

point2las

• Remove outliers by using a percentile times a factor, in a way analogous to point2dem.

convert_pinhole_model:

• Improve the accuracy of the RPC approximation distortion and undistortion.

sfs:

• Added the option –shadow-threshold to be able to specify a single shadow threshold for all images. Also
added –custom-shadow-threshold-list.

• Added the option –robust-threshold for situations when the measured image intensity is unreliable.

• Added the option –estimate-height-errors to estimate the uncertainty in height at each computed SfS DEM
pixel. It can be customized via –height-error-params.

• Added an auxiliary tool named sfs_blend to replace SfS pixels with ones from the original LOLA DEM in
permanently shadowed regions.

stereo_gui:

• Added the ability to find the contour of a georeferenced image at a given threshold. (It can be later edited,
saved to disk, etc.)

• Bugifxes for polygon drawing logic.

• Much more responsive for overlaying many images.

image_calc:

• Support the sign function (can help in creating masks).

pc_align:

• Bugifx for –initial-transform-from-hillshading with outlier removal.

• Add the –initial-transform-outlier-removal-params to control outlier removal when finding matches be-
tween DEMs to align using features detected in hillshaded images or selected manually.

• Added –initial-rotation-angle, to initialize the alignment transform as the rotation with this angle (in de-
grees) around the axis going from the planet center to the centroid of the point cloud.

Misc

• Moved the daily build to the release area on GitHub, at https://github.com/NeoGeographyToolkit/
StereoPipeline/releases

• Upgraded to GDAL 2.4 and PROJ4 5.2.0. (ISIS constrains updating to newer versions of these.)

• Added the option –ip-per-image to bundle adjustment and stereo, to detect roughly how many interest
points should be found per image (only a small fraction of them may eventually match across images).

• The –min-triangulation-angle in stereo must be always positive if set by the user. Can be set to something
very small if desired. This is a bug fix for this rarely used option (before, when set to 0 it would just reset
itself to some internal non-small value).
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• Bugifx for the VisionWorkbench implementation of the Levenberg-Marquardt algorithm, it was giving up
prematurely in challenging situations.

• Bugifx for affine epipolar alignment. Use the OpenCV function for finding the alignment matrix instead
of the ASP one as OpenCV can filter outliers which cause issues on rare occasions.

• Bugfix: Do not allow a full run to take place in a directory where a clip was run, as that will produce
incorrect results.

19.2 RELEASE 2.7.0, July 27, 2020

New functionality

• Support for ISIS version 4.1.10. Please set ISISDATA instead of ISIS3DATA with this version of ISIS and
ASP.

• Support for the Community Sensor Model (https://github.com/USGS-Astrogeology/usgscsm)

• Ability to install ASP with conda. See INSTALLGUIDE.rst for details.

• Moved the documentation to ReStructured Text, and Sphinx-Doc. See the documentation at: https://
stereopipeline.readthedocs.io

• As of this release, we have transitioned to the Semantic Versioning 2.0.0 standard for ASP.

bundle_adjust

• Can first create interest point matches among mapprojected images (automatically or manually) and use
those to create matches among the unprojected images when the latter are so dissimilar in perspective that
the direct approach fails. See –mapprojected-data.

stereo_gui

• Bug fix when zooming all images to same region when the region is such that all images are seen fully.

sfs

• Added a new very challenging example at the South Pole with drastic illumination changes and using a
non-stereo DEM as initial guess.

• Fixed a bug with craters missing under low light.

• Fixed a bug with computation of exposures in terrain with many shadows.

• Print the Sun azimuth angle for all images (useful for sorting them by illumination conditions).

hiedr2mosaic.py

• When hijitreg finds no match points between two CCDs, the program now emits a warning message to
STDOUT with a suggestion to perhaps fiddle with hijitreg manually, and rather than fail with a mysterious
exception warning, now gracefully falls back to assuming that there is no jitter correction between the two
CCDs that had no matches.

point2dem

• Use outlier filtering when computing the bounding box of a DEM. The same option
--remove-outliers-params controls this just as for removing outliers by triangulation er-
ror.

mapproject

• Fixed a bug when finding the extent of the mapprojected image when the DEM to project onto spans the
whole planet.
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point2mesh

• Only meshes in .obj format are created. This format can be opened in Meshlab, Blender, or some other
mesh viewer.

• The osgviewer program is no longer shipped.

• Fixed a bug with invalid points not being filtered.

• Fixed a bug with insufficient precision (now it can be set by the user and defaults to 17 digits).

• Added the option –texture-step-size to control the sampling rate for the texture, in addition to the -s option
that controls the sampling rate for the point cloud.

Misc

• Updated to C++ 11.

• Added phase subpixel correlation accuracy parameter.

19.3 RELEASE 2.6.2, June 15, 2019

DOI: https://doi.org/10.5281/zenodo.3247734

New satellites

• Added support for SkySat, together with a detailed example, including how to jointly align and optimize
cameras in respect to a reference DEM, while optionally refining the intrinsics. This approach may be
helpful for other images obtained with frame cameras and uncertain positioning information.

• Added support for CORONA KH-4B, KH-7, and KH-9 declassified images and their panoramic (optical
bar) camera models, as well as using and optimizing camera models with RPC distortion (only RPC is
supported for KH-7 because it is a linescan camera). An example is in the documentation.

New tools

• Added parallel_bundle_adjust which computes image statistics and IP matching in a parallel manner sim-
ilar to parallel_stereo.

• Added the cam_gen tool to create a correctly oriented pinhole camera model given camera intrinsics, lon-
lat coordinates of the corners (or some other pixels), and optionally a ground truth DEM. It can also parse
SkySat’s video/frame_index metafile to get this data. It can also take as input any camera supported by
ASP via –input-camera and create a most-similar pinhole camera model with given intrinsics.

• Added the coverage_fraction tool to provide a coverage estimate of the results of a stereo call.

• Added the image_mosaic tool which merges together images based on interest point matches. Can be used
to stitch together Corona scanned images.

• Added a new tool, n_align, to jointly align n clouds (re-implemented from Matlab, works well for small
clouds that are close to each other).

stereo_rfne

• Added the option to run a non-SGM subpixel option after running SGM/MGM.

• Added the phase correlation subpixel option. This is a Fourier transform based method.

pc_align

• Added a new approach to finding an initial transform between clouds, when they are DEMs, that may
be more robust to large scale or translation changes, or to noise. It is based on hillshading the DEMs and
finding interest point matches among them, which are then used to find the transform. Can be invoked with
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–initial-transform-from-hillshading <transform type>. Supported transforms are: ‘similarity’ (rotation +
translation + scale), ‘rigid’ (rotation + translation) and ‘translation’.

• Added the expression of the Euler angles in the North-East-Down coordinate system around the center of
gravity of the source cloud.

• Bug fix: intersection of bounding boxes of the clouds takes into account the initial transform applied to the
source points.

• Added a new alignment algorithm, based on https://github.com/IntelVCL/FastGlobalRegistration It can be
invoked with –alignment-method fgr. It can perform better than ICP when the clouds are close enough to
each other but there is a large number of outliers, when it can function with very large –max-displacement.
It does worse if the clouds need a big shift to align.

bundle_adjust

• Two passes of bundle adjustment (with outlier filtering after

• first pass) is now the default.

• The flag –skip-rough-homography is on by default as it usually gives more reliable results. Use –enable-
rough-homography to turn this option back on (useful when the footprint on the ground and difference in
perspective are large).

• The flag –disable-tri-ip-filter is also the default as input cameras may not be reliable enough for this filter.
Can be enabled back with –enable-tri-ip-filter.

• Added the –intrinsics-limits option to manually specify intrinsic parameter limits.

• Added the –num-random-passes option to allow repeat solving attempts with randomly distorted initial
parameters.

• Added option to automatically guess overlapping images from Worldview style XML camera files.

• Removed the non-Ceres bundle adjustment options.

• Added the option to share or not share selected intrinsic parameters between pinhole cameras when opti-
mizing intrinsics.

• Improvements in solving simultaneously for both intrinsics and extrinsics of n camera images if underlying
ground truth terrain in the form of a DEM or LIDAR point cloud is present. After this bundle adjustment,
pairwise stereo and DEM creation, the DEMs are well-aligned to the ground truth.

• Added the flag –reference-terrain-weight which, when increased, helps align better camera images to a
given reference terrain.

• Added the option –heights-from-dem. It is very helpful in determining an unknown focal length and
distortion parameters for pinhole cameras. It can be used together with —heights-from-dem-weight.

• Bug fix in outlier filtering for n images.

• Updated Ceres version from 1.11 to 1.14. When optimizing with multiple threads, results now vary slightly
from run to run. Results from single threaded runs are deterministic.

• Added a new –parameter-tolerance option. Stop when the relative error in the variables being optimized is
less than this.

• Documented the ability to create a roughly positioned pinhole camera model from an image if its intrinsics
and the longitude and latitude (and optionally height) of its corners (or some other pixels) are known.

• When multiple passes happen with outliers removed, match files are not over-written, but a new clean copy
of them gets saved.

• Renamed –create-pinhole-cameras to –inline-adjustments, and distortion_params to other_intrinsics. This
is needed since for the panoramic model there will be other intrinsic parameters as well.
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• Added the option –forced-triangulation-distance for when one really needs to triangulate with poor cam-
eras. Can be used with a very small but positive value of –min-triangulation-angle.

• Added the option –transform-cameras-using-gcp. If there are at least two images with each having at least
3 GCP (each GCP need not show in more than one image), use this to convert cameras from an abstract
coordinate system to world coordinates.

• Increased the default –num-ransac-iterations to 1000 from 100 so that the solver tries harder to find a fit.
Increased default –ip-inlier-factor from 1/15 to 0.2 to help with getting more interest points for steep terrain
with the pinhole session.

• Increased the default –ip-uniqueness-threshold from 0.7 to 0.8 to allow for more interest points.

• Option to filter interest points by elevation limit and lon-lat limit after each pass of bundle adjustment
except the last.

dem_mosaic

• Added normalized median absolute deviation (NMAD) output option.

• Added the option –force-projwin to create a mosaic filling precisely the desired box specified via
–t_projwin.

stereo_gui

• Added the ability to manually reposition interest points.

• Can now show non-synchronous .match files (that is, each IP need not be present in all images).

• Added basic functionality for drawing/editing/merging polygons on

• top of georeferenced images or DEMs. The polygons can be saved as shape files, and then used to cut out
portions of images with GDAL.

• Added the option –nodata-value. Pixels with value less than or equal to this are shown as transparent.

• Added the ability to view .vwip files (specify one per image).

• Can view (but not edit) GCP files, via –gcp-file (creating GCP is supported in a separate mode, per the
doc).

• The option –dem-file specifies a DEM to use when creating manually picked GCP and –gcp-file specifies
the name of the GCP file to use upon saving such GCP.

mapproject

• Added the –nearest-neighbor option to use that interpolation method instead of bicubic. This is better for
labeled images which should not be interpolated.

convert_pinhole_model

• Can create RPC distortion models of any degree, which can be further optimized in bundle_adjust. Old
RPC distortion files are still supported throughout ASP, but not functionality which optimizes them. They
can be approximately converted to new type RPC distortion files with this tool if optimization is desired.

Misc

• Compiled against USGS ISIS version 3.6.0.

• Expanded the documentation explaining how to align cameras to a DEM manually (or initialize such
cameras) by selecting matching points between the images and the DEM.

• The stereo tools and bundle_adjust will now cache image statistics and interest points to files on disk.

• In stereo and bundle_adjust, when images or cameras are newer than the match files, the latter get recom-
puted unless the tools are invoked with –force-reuse-match-files.
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• Added a fix to make stereo work with the ZY3 satellite.

• For stereo and bundle_adjust, added the –no-datum option to find interest points without assuming a
reliable datum exists, such as for irregularly shaped bodies. Added the related option –skip-rough-
homography to not use the datum in rough homography computation. Added the option –ip-num-ransac-
iterations for finer control of interest point matching. Added –ip-triangulation-max-error to control the
triangulation error.

• The cam2rpc tool accepts –t_srs and –semi-major-axis as alternatives to –datum and –dem-file.

• Add option –theia-overrides to camera_solve to make it easier to customize its behavior via flags.

• Added an explanation for how the pinhole model works.

19.4 RELEASE 2.6.1, August 13, 2018

New satellites

• Support Cartosat-1 and Perusat-1 RPC cameras.

New tools

• Added convert_pinhole_model, to convert between various existing such models.

• Added camera_footprint as a helpful utility to show where images will project on to the ground.

• Documented and improved the ipfind and ipmatch tools. ipfind is used to detect interest points in input
images, either to generate .vwip files for other tools or to experiment with different IP finding settings.
ipmatch matches the IPs contained in .vwip files to create .match files.

New camera models

• Added simple atmospheric refraction correction to the DG and SPOT5 camera models. This can be man-
ually disabled using the “–disable-correct-atmospheric-refraction” option.

• Added support for pinhole camera models where the lens distortion is given by an RPC model (rational
polynomial coefficients), of degrees 4, 5, and 6. Such a model may be more expressive than existing ones,
and its coefficients can now be optimized using bundle adjustment. An initial model can be created with
convert_pinhole_model.

stereo_corr

• Added new options for post-SGM subpixel stereo. Previously only a parabola method was used.

• Added option to perform cross-correlation checks on multiple resolution levels while using SGM/MGM.

• Added option –corr-search-limit to constrain the automatically computed correlation search range.

• Added –corr-memory-limit-mb option to limit the memory usage of the SGM/MGM algorithms.

• Improved search range estimation in nadir epipolar alignment cases. Added –elevation-limit option to help
constrain this search range.

• Added hybrid SGM/MGM stereo option.

• Improvements to SGM search range estimation.

• Added –min-num-ip option.

bundle_adjust

• Added the ability to optimize pinhole camera intrinsic parameters, with and without having a LIDAR or
DEM ground truth to be used as reference (the latter is recommended though).
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• The tool is a lot more sensitive now to –camera-weight, existing results may change a lot.

• Added the parameters –rotation-weight and –translation-weight to penalize large rotation and translation
changes.

• Added the option –fixed-camera-indices to keep some cameras fixed while optimizing others.

• Can read the adjustments from a previous invocation of this program via –input-adjustments-prefix.

• Can read each of pc_align’s output transforms and apply it to the input cameras via –initial-transform, to
be able to bring the cameras in the same coordinate system as the aligned terrain (the initial transform
can have a rotation, translation, and scale). If –input-adjustments-prefix is specified as well, the input
adjustments are read first, and the pc_align transform is applied on top.

• Renamed –local-pinhole to –create-pinhole-cameras.

• Added the parameter –nodata-value to ignore pixels at and below a threshold.

• Added the ability to transfer interest points manually picked in mapprojected images to the the original
unprojected images via –mapprojected-data.

• Added the flag –use-lon-lat-height-gcp-error. Then, if using GCP, the three standard deviations are inter-
preted as applying not to x, y, z but to latitude, longitude, and height above datum (in this order). Hence, if
the latitude and longitude are known accurately, while the height less so, the third standard deviation can
be set to something much larger.

• Added the ability to do multiple passes of bundle adjustment, removing outliers at each pass based on
reprojection error and disparity (difference of pixel value between images). This works for any number of
cameras. Match files are updated with outliers removed. Controlled via –num-passes, –remove-outliers-
params and –remove-outliers-by-disparity-params.

• Added the option –save-cnet-as-csv, to save the control network containing all interest points in the format
used by ground control points, so it can be inspected.

• If –datum is specified, bundle_adjust will save to disk the reprojection errors before and after optimization.

stereo_gui

• Can view SPOT5 .BIL files.

pc_align

• Add the ability to help the tool with an initial translation specified as a North-East-Down vector, to be used
to correct known gross offsets before proceeding with alignment. The option is –initial-ned-translation.

• When pc_align is initialized via –initial-transform or –initial-ned-translation, the translation vector is now
computed starting from the source points before any of these initial transforms are applied, rather than after.
The end point of this vector is still the source points after alignment to the reference. This is consistent
with the alignment transform output by the tool, which also is from the source points before any initial
alignment and to the reference points.

• The translation vector was expressed incorrectly in the North-East-Down coordinate system, that is now
fixed.

dem_mosaic

• If the -o option value is specified as filename.tif, all mosaic will be written to this exact file, rather than
creating tiles.

point2dem

• Added the ability to apply a filter to the cloud points in each circular neighborhood before gridding. In
addition to the current weighted average option, it supports min, max, mean, median, stddev, count, nmad,
and percentile filters. The –search-radius-factor parameter can control the neighborhood size.
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• Sped up hole-filling in ortho image generation. If this creates more holes than before, it is suggested to
relax all outlier filtering, including via –remove-outliers-params, median filtering, and erosion.

• Added the option –orthoimage-hole-fill-extra-len to make hole-filling more aggressive by first extrapolat-
ing the cloud.

datum_convert

• Rewrote the tool to depend on the Proj.4 HTDPGrids grid shift system. This fixed some situations where
the tool was not working such as WGS84/NAD83 conversions and also added support for datum realiza-
tions (versions).

• Vertical datum conversion is only supported in simple cases like D_MARS to MOLA.

• Even with HTDPGrids, datum support with the Proj.4 library is poor and will hopefully be improved with
future releases. Until then try to get external verification of results obtained with the datum_convert tool.

wv_correct

• Supports WV2 TDI = 32 in reverse scan direction.

Misc

• We now compile against USGS ISIS version 3.5.2.

• The tools mapproject, dem_mosaic, dg_mosaic, and wv_correct support the –ot option, to round the output
pixels to several types of integer, reducing storage, but perhaps decreasing accuracy.

• The tools mapproject and image_calc support the –mo option to add metadata to the geoheader in the
format ‘VAR1=VAL1 VAR2=VAL2’, etc.

• Handle properly in bundle_adjust, orbitviz, and stereo with mapprojected images the case when, for RPC
cameras, these coefficients are stored in _RPC.TXT files.

• Support for web-based PROJ.4 strings, e.g., point2dem –t_srs http://spatialreference.org/ref/iau2000/
49900/

• Added –max-output-size option to point2dem to prevent against creation of too large DEMs.

• Added image download option in hiedr2mosaic.py.

• Bug fix in cam2map4stereo.py when the longitude crosses 180 degrees.

• Added support for running sparse_disp with your own Python installation.

• Bug fix for image cropping with epipolar aligned images.

• The sfs tool supports the integrability constraint weight from Horn 1990.

• The software works with both Python versions >= 2.6 and 3.

19.5 RELEASE 2.6.0, May 15, 2017

New stereo algorithms

• ASP now supports the Semi Global Matching (SGM) and More Global Matching (MGM) stereo algo-
rithms. They do particularly well for Earth imagery, better than the present approaches. They can be
invoked with –stereo-algorithm 1 and 2 respectively.

New tools

• Added cam2rpc, a tool to create an RPC model from any ASP-supported camera. Such cameras can be
used with ASP for Earth and planetary data (stereo’s –datum option must be set), or passed to third-party
stereo tools S2P and SETSM.
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• Added correct_icebridge_l3_dem for IceBridge.

• Added fetch_icebridge_data for IceBridge.

parallel_stereo

• By default, use as many processes as there are cores, and one thread per processes.

stereo_pprc

• Large speedup in epipolar alignment.

• Improved epipolar alignment quality with standard pinhole cameras.

• Added the options –ip-inlier-threshold and –ip-uniqueness-threshold for finer-grained control over interest
point generation.

• Fix a bug with interest point matching the camera model is RPC and the RPC approximation domain does
not intersect the datum.

stereo_corr

• Added new option –stereo-algorithm. Choices 1 and 2 replaces the standard integer correlator with a
new semi-global matching (SGM) correlator or an MGM correlator respectively. SGM/MGM is slow
and memory intensive but it can produce better results for some challenging input images, especially for
IceBridge. See the manual for more details.

stereo_tri

• Added the option –min-triangulation-angle to not triangulate when rays have an angle less than this.

stereo_gui

• Zooming in one image can trigger all other side-by-side images to zoom to same region.

• Clicking on a pixel prints image pixel indices, value, and image name. Selecting a region with Con-
trol+Mouse prints its bounds in pixels, and, if georeferenced, in projected and degree units.

• Added a 1D profile tool for DEMs.

• Can visualize the pixel locations for a GCP file (by interpreting them as interest points).

• Can save a screenshot of the current view.

• If all images are in the same window, can show a given image above or below all others. Also can zoom
to bring any image in full view (from the list of images on the left).

• Options to set the azimuth and elevation when showing hillshaded images.

dem_mosaic

• Added the option –dem-blur-sigma to blur the output DEM.

• Use by default –weights-exponent 2 to improve the blending, and increase this to 3 if –priority-blending-
length is specified.

• Added the options –tile-list, –block-max, and –nodata-threshold.

• Display the number of valid pixels written.

• Do not write empty tiles.

geodiff

• One of the two input files can be in CSV format.

dg_mosaic

• Save on output the mean values for MEANSUNEL, MEANSUNAZ, and a few more.
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point2dem

• Added the parameter –gaussian-sigma-factor to control the Gaussian kernel width when creating a DEM
(to be used together with –search-radius-factor).

sfs

• Improvements, speedups, bug fixes, more documentation, usage recipes, much decreased memory usage,
together with a lot of testing and validation for the Moon.

• Can run on multiple input DEM clips (which can be chosen as representative for the desired large input
DEM region and images) to solve for adjusted camera positions throughout this region.

• Added parallel_sfs, to run sfs as multiple processes over multiple machines.

bundle_adjust

• Can optimize the intrinsic parameters for pinhole cameras. The focal length, optical center, and distortion
parameters can be fixed or varied independently of each other. To be used with –local-pinhole, –solve-
intrinsics, –intrinsics-to-float.

• Added the option –overlap-list. It can be used to specify which image pairs are expected to overlap and
hence to be used to compute matches.

• Added the option –initial-transform to initialize the adjustments based on a 4x4 rotation + translation
transform, such as coming from pc_align.

• Added the options –ip-inlier-threshold and –ip-uniqueness-threshold for finer-grained control over interest
point generation.

pc_align

• Can solve for a rotation + translation or for rotation + translation + scale using least squares instead of
ICP, if the first cloud is a DEM. It is suggested that the input clouds be very close or otherwise the –initial-
transform option be used, for the method to converge. The option is: –alignment-method [ least-squares |
similarity-least-squares ]

Misc

• Built with ISIS 3.5.0.

• Minimum supported OS versions are OSX 10.11, RHEL 6, SUSE 12, and Ubuntu 14.

• Ship with GDAL’s gdalwarp and gdaldem.

• Added integration with Zenodo so that this and all future ASP releases will have a DOI. More info in
the asp_book.pdf

19.6 RELEASE 2.5.3, August 24, 2016

Highlights:

• Added the ability to process ASTER L1A VNIR images via the tool aster2asp that creates image files and both
RPC and rigorous linescan camera models that can then be passed to stereo. The RPC model seems to work just
as well as the rigorous one and is much faster.

• Added the ability to process SPOT5 images with stereo, bundle_adjust, and map_project using a rigorous lines-
can camera model.

• Added the add_spot_rpc tool to create RPC models for SPOT5 which allows them to be map projected with the
RPC model.

pc_align
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• Can solve for a scale change in addition to a rotation and translation to best align two clouds, hence for a
similarity transform. Option: –alignment-method similarity-point-to-point

mapproject

• Added ability to map project color images.

• Added option to map project on to a flat datum.

camera_solve

• Added option to accept multiple input camera models.

Other:

dem_mosaic

• Fix a bug with mosaicking of DEMs over very large extent.

• Fix a bug with 360 degree longitude offset.

• Added the option –use-centerline-weights. It will compute blending weights based on a DEM centerline
algorithm. Produces smoother weights if the input DEMs don’t have holes or complicated boundary.

colormap

• Added a new colormap scheme, ‘cubehelix’, that works better for most color-blind people.

stereo_gui

• Use transparent pixels for displaying no-data values instead of black.

• Can delete or hillshade individual images when overlayed.

• Add control to hide/show all images when in overlay mode.

Misc

• Make ASP handle gracefully georeferenced images with some pixels having projected coordinates outside
of the range expected by PROJ.4.

• Removed the deprecated orthoproject tool. Now mapproject should be used.

• Fixed a bug in pc_align which caused the –max-disp argument to be misread in some situations.

• Removed some extraneous code slowing down the datum_convert tool.

• Fixed a bug in point2dem handling the Albers Conic Equal Area projection.

• Added standard thread/bigtiff/LZW options to image_calc.

19.7 RELEASE 2.5.2, Feb 29, 2016

Highlights:

Added a constellation of features and tools to support solving for the positions of input images lacking position
information. Can be used for aerial imagery with inaccurate or incomplete pose information, images from low cost
drones, historical images lacking metadata, and images taken with handheld cameras.

camera_solve

• New tool which adds support for aerial imagery etc as described above.

• Uses the THEIA library (http://www.theia-sfm.org/index.html) to compute camera positions and orienta-
tions where no metadata is available.
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• Ground control points and estimated camera positions can be used to find absolute camera positions.

• Added section to documentation describing ways to use ASP to process imagery from NASA’s IceBridge
program.

camera_calibrate

• A convenience camera calibration tool that is a wrapper around the OpenCV checkerboard calibration
program with outputs in formats for camera_solve and ASP.

bundle_adjust

• Added several options to support solving for pinhole camera models in local coordinates using GCPs or
estimated camera positions.

• Improved filtering options for which images are IP-matched.

orbitviz

• Significantly improved the accuracy of the plotted camera locations.

• Added option to load results from camera_solve.

wv_correct

• Now corrects TDI 8 (Reverse) of WV01 and TDI 8 (Forward and Reverse) and TDI 32 (Forward) of
WV02. Other correction behavior is unchanged.

stereo_corr

• Added the ability to filter large disparities from D_sub that can greatly slow down a run. The options are
–rm-quantile-percentile and –rm-quantile-multiple.

undistort_image

• A new tool to test out pinhole model lens distortion parameters.

Lens distortion models:

• Switched from binary .pinhole file format to updated version of the old plain text .tsai file format.

• Added support for Photometrix camera calibration parameters.

• New appendix to the documentation describing the .tsai file format and supported lens distortion models.

Other:

Tools

• Suppressed pesky aux.xml warning sometimes printed by GDAL.

• Removed the long-deprecated orthoproject tool.

• Added icebridge_kmz_to_csv and lvis2kml utilities.

point2las

• Write correct bounding box in the header.

• Respect projections that are not lon-lat.

point2dem

• Increased speed of erode option.

docs

• Mention DERT, a tool for exploring large DEMs.

• Added new section describing camera_solve tool in detail.
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19.8 RELEASE 2.5.1, November 13, 2015

Highlights:

stereo

• Added jitter correction for Digital Globe linescan imagery.

• Bug fix for stereo with map-projected images using the RPC session (e.g, for map-projected Pleiades
imagery).

• Added OpenCV-based SIFT and ORB interest point finding options.

bundle_adjust

• Much improved convergence for Digital Globe cameras.

• Added OpenCV-based SIFT and ORB interest point finding options.

point2dem, point2las, and pc_align

• The datum (-r <planet> or –semi-major-axis) is optional now. The planet will be inferred automatically
(together with the projection) from the input images if present. This can be useful for bodies that are
not Moon, Mars, or Earth. The datum and projection can still be overridden with –reference-spheroid (or
–datum) and –t_srs.

dem_mosaic

• Introduce –priority-blending-length, measured in input pixels. If positive, keep unmodified values from the
earliest available DEM at the current location except a band this wide near its boundary where blending will
happen. Meant to be used with smaller high-resolution “foreground” DEMs and larger lower-resolution
“background” DEMs that should be specified later in the list. Changing –weights-exponent can improve
transition.

pc_align

• Added the ability to compute a manual rotation + translation + scale transform based on user-selected point
correspondences from reference to source cloud in stereo_gui.

stereo_gui

• Added the ability to generate ground control point (GCP) files for bundle_adjust by picking features. In
addition to the images to be bundle-adjusted, one should provide a georeferenced image to find the GCP
lon-lat, and a reference DEM to find the GCP heights.

Other:

stereo

• If the input images are map-projected (georeferenced) and alignment method is none, all image outputs of
stereo are georeferenced as well, such as GoodPixelMap, D_sub, disparity, etc. As such, all these data can
be overlayed in stereo_gui.

• The output point cloud saves datum info from input images (even when the inputs are not georeferenced).

• Increased reliability of interest point detection.

• Decreased the default timeout to 900 seconds. This still needs tuning and a permanent solution is necessary.

point2dem, point2las, and pc_align

• Accept –datum (-r) MOLA, as a shortcut for the sphere with radius 3,396,000 meters.

dem_mosaic

• Fix an issue with minor jumps across tiles.
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• Introduce –save-dem-weight <index>. Saves the weight image that tracks how much the input DEM with
given index contributed to the output mosaic at each pixel (smallest index is 0).

• Introduce –save-index-map. For each output pixel, save the index of the input DEM it came from (applica-
ble only for –first, –last, –min, and –max). A text file with the index assigned to each input DEM is saved
as well.

• Rename –blending-length to –extra-crop-length, for clarity.

dg_mosaic

• Added the switch –fix-seams to use interest point matching to fix seams in the output mosaic due to
inconsistencies between image and camera data. Such artifacts may show up in older (2009 or earlier)
Digital Globe images.

stereo_gui

• Added the option –match-file to view interest point matches.

• Added the options –delete-temporary-files-on-exit and –create-image-pyramids-only.

• Can read the georeference of map-projected ISIS cubes.

point2dem

• Respect –t_projwin to the letter.

• Can create simultaneously DEMs at multiple resolutions (by passing multiple values in quotes to –dem-
spacing).

• Fix minor discrepancies in the minor semi-axis for the WGS84, NAD83 and WGS72 datums. Now using
GDAL/OGR for that.

point2las

• Save the LAS file with a datum if the input PC had one.

image_calc

• Fix calculation bug when no-data is present.

pc_align

• Upgraded to the latest libpointmatcher. This may result in minor alignment changes as the core algorithm
got modified.

• Save all PC clouds with datum and projection info, if present. Add comment lines with the datum and
projection to CSV files.

geodiff

• Bug fix when the two DEMs have longitudes offset by 360 degrees.

colormap

• Default style is binary-red-blue. Works better than jet when data goes out of range.

pc_merge

• Can merge clouds with 1 band. That is, can merge not only PC.tif files but also L.tif files, with the goal of
using these two merged datasets to create a merged orthoimage with point2dem.

point2mesh

• Can create a mesh from a DEM and an orthoimage (DRG file).
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19.9 RELEASE 2.5.0, August 31, 2015

Improved speed, coverage, and accuracy for areas with steep slopes for ISIS, RPC and Pinhole cameras by implement-
ing stereo using images map-projected onto an existing DEM. This mapprojection is multi-process and hence much
faster than cam2map. This functionality was previously available only for Digital Globe images.

New tools:

• Added stereo_gui, an image viewer and GUI front-end. Features:

– View extremely large images using a pyramid approach.

– If invoked with the same interface as stereo, can run stereo on selected clips.

– Load images with int, float, and RGB pixels, including ISIS cubes, DEMs, NTF, TIF, and other
formats.

– Can overlay georeferenced images and can toggle individual images on and off (like Google Earth).

– Show images side-by-side, as tiles on grid, or on top of each other.

– Create and view hillshaded DEMs.

– View/add/delete interest points.

– Create shadow thresholds by clicking on shadow pixels (needed for sfs).

– Based on Michael Broxton’s vwv tool.

• Added sfs, a tool to refine DEMs using shape-from-shading. Can optimize the DEM, albedo per pixel,
image exposures and camera positions and orientations using a multi-resolution pyramid approach. Can
handle shadows. Tested with LRO NAC lunar images at low latitudes and toward poles. It works only with
ISIS images.

• Added image_calc, a tool for performing simple per-pixel arithmetic operations on one or more images.

• Added pc_merge, a tool for concatenating ASP-produced point clouds.

• Added pansharp, a tool to apply a pansharp algorithm to a matched grayscale image and a low resolution
color image.

• Added datum_convert, a tool to transform a DEM to a different datum (e.g., NAD27 to WGS84).

• Added geodiff, a tool for taking the (absolute) difference of two DEMs.

• Documented the colormap tool. Added a new colormap option based on the paper “Diverging Color Maps
for Scientific Visualization” (http://www.sandia.gov/~kmorel/documents/ColorMaps/).

• Added gdalinfo, gdal_translate, and gdalbuildvrt to the bin directory. These executables are compiled with
JPEG2000 and BigTIFF support, and can handle NTF images.

docs

• Added a documentation section on ‘tips and tricks’, summarizing in one place practices for getting the
most out of ASP.

stereo

• Increase the default correlation timeout to 1800 seconds.

• Fix failure in interest point matching in certain circumstances.

• Use bundle-adjusted models (if provided) at all stages of stereo, not just at triangulation.
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• Added –right-image-crop-win in addition to –left-image-crop-win. If both are specified, stereo crops both
images to desired regions before running stereo (this is different from when only –left-image-crop-win is
specified, as then no actual cropping happens, the domain of computation is just restricted to the desired
area).

• Bug fix, remove outliers during search range determination.

• Added the option –ip-per-tile, to search for more interest points if the default is insufficient.

• If the input images are georeferenced, the good pixel map will be written with a georeference.

point2dem

• Fixed a slight discrepancy in the value of the semi-minor axis in the WGS84 and NAD83 datum imple-
mentations.

• Added the option –median-filter-params <window size> <threshold> to remove spikes using a median
filter.

• Added the option –erode-length <num> to erode pixels from point cloud boundary (after outliers are re-
moved, but before filling in holes).

• Improved hole-filling, and removed the –hole-fill-mode and –hole-fill-num-smooth-iter, as there’s only one
algorithm now.

• Improved performance when large holes are to be filled.

• Can create a DEM from point clouds stored in CSV files containing easting, northing, and height above
datum (the PROJ.4 string needed to interpret these numbers should be set with –csv-proj4).

• Fixed a bug in creating DEMs from CSV files when different projections are used on input and output.

• Expose to user gnomonic and oblique stereographic projections, as well as false easting and false northing
(where applicable). This is a shortcut from using explicitly t_srs for the PROJ.4 string.

• The default no-data value is set to the smallest float.

pc_align

• Can ingest CSV files containing easting, northing, and height above datum (the PROJ.4 string needed to
interpret these numbers should be set with –csv-proj4).

• If the reference point cloud is a DEM, the initial and final errors in the statistics, as well as gross outlier
removal, are done using a new distance function. Instead of finding the distance from a 3D point to the
closest point in the cloud, the 3D point is projected onto DEM’s datum, its longitude and latitude are
found, the height in the DEM is interpolated, and and the obtained point on the DEM is declared to be the
closest point. This is more accurate than the original implementation for coarse DEMs. The old approach
is available using the –no-dem-distances flag.

• Fix a bug with a 360 degree longitude offset.

point2las

• Added the ability to specify a custom projection (PROJ.4 string) for output LAS files.

dem_mosaic

• Write GeoTIFF files with blocks of size 256 x 256 as those may be faster to process with GDAL tools.

• Bug fix when the tool is used to re-project.

• Added the option –weights-blur-sigma <num> to allow the blending weights to be blurred by a Gaussian
to increase their smoothness.

• Added the option –weight-exponent <num>, to allow weights to increase faster than linearly.
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• Added –stddev option to compute standard deviation.

• Added the ability to fill holes in the output mosaic.

bundle_adjust

• Added new parameters, –ip-per-tile and –min-triangulation-angle.

• Bug fix in handling situations when a point cannot get projected into the camera.

• Bug fix in the camera adjustment logic. Any .adjust files may need to be regenerated.

image2qtree

• Bug fixes.

cam2map4stereo.py

• Create temporary files in current directory, to avoid access issues to system directories.

mapproject

• Can run on multiple machines.

• Use multiple processes for ISIS images, for a huge speedup.

• Bug fix, the mapprojected image should not go much beyond the DEM it is mapprojected onto (where it
would have no valid pixels).

dg_mosaic

• Default penalty weight produces a more accurate fit when creating an RPC model from a DG model.

• Handle the situation when two images to be mosaicked start at the same output row number.

• Added –target-resolution option to specify the output resolution in meters.

Misc.

• Upgraded to ISIS 3.4.10.

• Oldest supported OSX version is 10.8.

• Added documentation for image2qtree and hillshade.

19.10 RELEASE 2.4.2, October 6, 2014

ASP can perform multi-view triangulation (using both the stereo and parallel_stereo tools). The first image is set as
reference, disparities are computed from it to the other ones, and joint triangulation is performed.

Added a new tool, dem_mosaic, for mosaicking a large number of DEMs, with erosion at boundary, smooth blending,
and tiled output. Instead of blending, the tool can do the first, last, min, max, mean, median, or count of encountered
DEM values.

dg_mosaic

• Support for multi-band (multi-spectral) images. Use –band <num> to pick a band to mosaic.

stereo

• Bug fix in interest point matching in certain circumstances.

• Set the correlation timeout to 600 seconds. This is generous and ensures runs don’t stall.

point2dem

• Take as input n clouds and optionally n texture files, create a single DEM/orthoimage.
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• Take as input LAS and CSV files in addition to ASP’s PC format.

• Fix a bug in the interplay of hole-filling and outlier removal for orthoimage creation.

• Ensure that the DEM grid is always at integer multiples of the grid size. This way, two DEMs with
overlapping grids of the same size will be exactly on top of each other, minimizing interpolation error in
subsequent mosaicking.

• Outlier removal is on by default. Can be disabled by setting the percentage in –remove-outliers-params to
100.

bundle_adjust

• Use multiple-threads for non-ISIS sessions.

• Added the parameter –overlap-limit <num> to limit the number of subsequent images to search for matches
to the current image.

• Added the parameter –camera-weight <val>, to set the weight to give to the constraint that the camera
positions/orientations stay close to the original values (only for the Ceres solver).

dem_geoid

• Support the EGM2008 geoid. The geoid surface across all Earth is computed with an error of less than 1.5
cm compared to the values generated by harmonic synthesis. A 2.5 x 2.5 minute grid is used.

• Converted the EGM geoids shipped with ASP to INT16 and JPEG2000, resulting in size reduction of more
than 10x.

wv_correct

• Corrects TDI of 16, 48, 56, and 64 (forward and reverse scan directions) for WV01, TDI of 8 (forward only)
for WV01, and TDI of 16, 48, 64 (forward and reverse scan directions) for WV02. Returns uncorrected
images in other cases.

pc_align

• Fix a crash for very large clouds.

• Use a progress bar when loading data.

• Support LAS files on input and output.

point2las

• Bug fix when saving LAS files in respect to a datum.

Documentation

• Move the non-ISIS-specific tutorial sections onto its own chapter, to be read by both ISIS and Earth users.
Updates and cleanup.

19.11 RELEASE 2.4.1, 12 July, 2014

Added a new tool, bundle_adjust, which uses Google’s ceres-solver to solve for adjusted camera positions and orien-
tations. Works for n images and cameras, for all camera types supported by ASP.

wv_correct

• Improved corrections for WV01 images of TDI 16.

stereo_rfne

• Performance bugfix when the integer disparity is noisy.
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stereo_fltr

• Fix for large memory usage when removing small islands from disparity with –erode-max-size.

stereo_tri

• Bug fixes for MER cameras.

stereo_tri and mapproject

• Added the option –bundle-adjust-prefix to read adjusted camera models obtained by previously running
bundle_adjust with this output prefix.

point2las

• LAS files can be saved in geo-referenced format in respect to a specified datum (option –reference-
spheroid).

point2dem

• Bug fix, longitude could be off by 360 degrees.

• Robustness to large jumps in point cloud values.

pc_align

• Ability to read and write CSV files having UTM data (easting, northing, height above datum).

• Read DEMs in the ISIS cube format.

19.12 RELEASE 2.4.0, 28 April, 2014

Added wv_correct, a tool for correcting artifacts in Digital Globe WorldView-1 and WorldView-2 images with TDI of
16.

Added logging to a file for stereo, pc_align, point2dem, point2mesh, point2las, and dem_geoid.

Added a tutorial for processing Digital Globe Earth imagery and expanded the MOC tutorial.

Bug fixes in mosaicking of Digital Globe images.

parallel_stereo

• Use dynamic load balancing for improved performance.

• Automatically determine the optimal number of processes and threads for each stage of stereo.

stereo_pprc

• Added the –skip-image-normalization option (for non-ISIS images and alignment-method none), it can
help with reducing the size of data on disk and performance.

stereo_rfne

• Added new affine subpixel refinement mode when –subpixel-mode = 3. This mode sacrifices the error
resistance of Bayes EM mode in exchange for reduced computation time. For some data sets this can
perform as well as Bayes EM in about one fifth the time.

stereo_fltr:

• Hole-filling is disabled by default in stereo_fltr. It is suggested to use instead point2dem’s analogous
functionality. It can be re-enabled using –enable-fill-holes.

• Added the option –erode-max-size to remove isolated blobs.
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• Relaxed filtering of disparities, retaining more valid disparities. Can be adjusted with –filter-mode and
related parameters.

stereo_tri:

• Added ability to save triangulation error for a DEM as a 3D North-East-Down vector rather than just its
magnitude.

• When acting on map-projected images, handle the case when the DEM used for map-projection does not
completely encompass the images.

pc_align:

• Read and write CSV files in a wide variety of formats, using the –csv-format option.

• Display the translation component of the rigid alignment transform in the local North-East-Down coordi-
nate system, as well as the centroid of source points used in alignment.

• Save to disk the convergence history (iteration information).

• Added the ability to explicitly specify the datum semi-axes.

• Bug fix for saving transformed clouds for Moon and Mars.

• More efficient processing of reference and source points by loading only points in each cloud within a
neighborhood of the long/lat bounding box of the other cloud.

• Make it possible to generate ortho and error images using point2dem with the transformed clouds output
by pc_align.

point2dem:

• Replaced the core algorithm. Instead of sampling the point cloud surface, which is prone to aliasing, the
DEM height at a given grid point is obtained as a weighted average of heights of all points in the cloud
within search radius of the grid point, with the weights given by a Gaussian. The cutoff of the Gaussian can
be controlled using the –search-radius-factor option. The old algorithm is still available (but obsoleted)
using the –use-surface-sampling option. The new algorithm makes the –fsaa option redundant.

• Added the ability to remove outliers by triangulation error, either automatically (–remove-outliers) or
manually, with given error threshold (–max-valid-triangulation-error).

• Added two algorithms to fill holes in the output DEM and orthoimage (–hole-fill-mode).

• The way the default DEM spacing is computed was modified, to make dependent only on the local distri-
bution of points in the cloud and robust to outliers.

• Can handle highly noisy input point clouds without spikes in memory usage and processing time.

• Improved memory usage and performance for large point clouds.

• Bug fix, the DEM was shifted by 1 pixel from true location.

19.13 RELEASE 2.3.0, 19 November, 2013

TOOLS:

• Added pc_align, a tool for aligning point clouds, using the libpointmacher library (https://github.com/ethz-asl/
libpointmatcher). Sparse and dense point clouds are supported, as well as DEMs. Two ICP methods are sup-
ported, point-to-plane and point-to-point. Memory and processing usage are proportional to the desired number
of input points to use rather than to the overall input data sizes.

• Added lronac2mosaic.py, a tool for merging the LE and RE images from the LRONAC camera into a single
map-projected image. The output images can be fed into the stereo tool to generate DEMs.
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• rpc_maprpoject and orthoproject are combined into a single tool for projecting a camera image onto a DEM for
any camera model supported by Stereo Pipeline. The old orthoproject is kept for backward compatibility for a
while.

GENERAL:

• Stereo Pipeline (almost) daily and fully verified builds for all platforms are available for the adventur-
ous user (http://byss.arc.nasa.gov/stereopipeline/daily_build/, which was later moved to https://github.com/
NeoGeographyToolkit/StereoPipeline/releases). When requesting support, please provide the output of “stereo
–version”.

• The size of Stereo Pipeline output data has been reduced, by up to 40%, particularly point clouds and DEMs are
between 30% to 70% smaller. Better encoding is used, output data is rounded (up to 1 mm), and point clouds
are offset and saved as float instead of double.

• Timeout option added for stereo correlation, preventing unreasonably long correlation times for certain image
tiles.

• Subpixel mosaicking in dg_mosaic uses bilinear interpolation instead of nearest neighbor avoiding artifacts in
certain situations.

• dg_mosaic can generate a combined RPC model in addition to the combined DG model. It accepts flags for
specifying input and output nodata values.

• point2dem with the –fsaa option for reducing aliasing at low-resolution DEM generation has been improved as
to remove the erosion of of valid data close to no-data values.

• Bug fixes for parallel_stereo, point2dem, etc.

19.14 RELEASE 2.2.2, 17 MAY 2013

(incremented from 2.2.1 after one more bugfix)

TOOLS:

• stereo_mpi renamed to parallel_stereo and made to work on any machines with shared storage, rather than just
on supercomputers using Intel’s MPI library. Bug fixes for homography and affine epipolar alignment modes,
etc.

• Bug fix for dem_geoid path to geoids, more robust datum identification.

19.15 RELEASE 2.2.0, 6 MAY 2013

GENERAL:

• ISIS headers removed from IsisIO’s headers.

• Removed unneeded mutex inside inpaint algorithm.

• Interest point matching and description are parallel now.

• Stereo pprc uses separable convolution for anti-aliasing.

• IsisIO made compliant with ISIS 3.4.3’s API.

• Blob consolidation (for inpainting) is now parallel.

• Yamaha RMAX code dropped.

SESSIONS:
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• RPC mode can now read Astrium data.

• DG added additional safety checks for XML values.

• DG, ISIS, and RPC now have affineepipolar alignment option.

• All sessions had their API changed. We now use Transform objects instead of LUTs to reverse map projections
and alignments.

TOOLS:

• Added dem_geoid, dg_mosaic, and stereo_mpi.

• Added new interest point matching method to stereo.

• Added new DEM seed mode for stereo.

• Point2dem sped up by reducing over rasterization of triangles.

• Added the –use-local-homography option to stereo_corr. Homography transform is applied per tile.

• Fix point2dem where for certain projections we were setting K=0.

• Stereo can now operate using command-line arguments only, without stereo.default.

19.16 RELEASE 2.1.0, 8 JANUARY 2013

GENERAL:

• Added documentation for processing GeoEye, Digital Globe, and Dawn FC data.

• Fixed implementation of internal RANSAC function.

• DEMError has been renamed IntersectionErr. 3D IntersectionErr is now recordable in local North East Down
format.

SESSIONS:

• Added RPC processing session.

• DG sessions now use bicubic interpolation for map projection arithmetic.

• Fixed bug in case where DG XML file had single TLC entry.

• DG sessions now applies velocity aberration corrections.

TOOLS:

• Have point2dem use correct nodata value when writing DRGs.

• Fix segfault issue in point2dem due to triangle clipping.

• Hiedr2mosaic python script now supports missing CCD files and start/stop resume on noproj step for bundle
adjustment.

• Max pyramid level used for stereo correlation is configurable with corr-max-levels option.

• Stereo accepts left-image-crop-win option for processing of specific image coordinates.

• Stereo_pprc accepts nodata-threshold and nodata-percentage options for masking (possibly shadows).

• Stereo command should now correctly call secondary executables so that their dependencies are loaded.
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19.17 RELEASE 2.0.0, 20 JUNE 2012

GENERAL:

• Modified ASP according to API changes in ISIS 3.4.0.

• Added new interest point matching code. Provides better initial guess for search range.

• Complete changed stereo.default format. See stereo.default.example for an example.

• Complete rewrote integer correlator for improved speed and less memory use.

• Relicense code to be Apache 2 licensed instead of NOSA.

SESSIONS:

• Add normalization options to PINHOLE session.

• Added Digital Globe (DG) session. This supports the linearized linescan camera model that is described in the
supporting XML file.

• Deleted KEYPOINT session. PINHOLE essentially does all of that.

EXAMPLES:

• Added DEMError output example for MOC.

• Added jigsaw example for MOC.

• Added HiRISE example dataset.

TOOLS:

• Dropped release of isis_adjust and bundlevis.

• Fix int32 overflow in arithmetic for subsampling in preprocessing.

• Remove Python 2.4 incompatible call in cam2map4stereo.py.

• Speed up point2dem texture access by remove unnecessary mutex.

• Add earth mode and fix non spherical support in point2dem.

• Added lronac4staged.py.

• Implemented D_sub or seeded integer correlation in stereo_corr.

• Fourth channel of output PC file is now triangulation error.

• Added –t_srs option to point2dem.

• Added rpc_mapproject tool. This provides an optional map_projection step that can be used for DG session.

• Allow IAU2000:* projection options to be used by point2dem.

• No-Data is now colored black in GoodPixelMap.

• Make noproj step in hiedr2mosaic parallel.
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19.18 RELEASE 1.0.5, 27 OCT 2011

Fixed ASP to work with ISIS 3.3.0’s new API changes and library dependencies.

Enabled parallel writing in Pinhole Session.

TOOLS:

• Fix possible infinite loop in stereo_corr’s search range.

• Shutoff rotation invariance in automatic search range for better quality results. This is possible because the input
images are already aligned.

• Sub image produced by stereo_pprc are now limited to around 8MB.

• Fix disparity_debug to work with integer disparities as well.

• All ASP tools should now have a ‘–version’ option.

• Bug fix point2dem where rasterizer was accessing outside of allocated memory.

• Speed up mask generation in stereo_pprc by avoiding mutex.

• Speed up hole filling in stereo_fltr by avoiding mutex.

19.19 RELEASE 1.0.4, 23 MAY 2011

Added support for CAHVORE in pinhole sessions.

TOOLS:

• Hide GDAL warnings caused by our file integrity checks.

• Mostly added standardized options for settings threads and BigTIFF.

• Have orthoproject return same type as input plus alpha channel.

• Improved edge_masking, speeds up stereo_fltr and stereo_pprc.

• Have cam2map4stereo.py explicitly use ISIS’s getkey command.

• Fix and optimized point2dem. Remove caching and improved rendering times. This should fix BigTIFF prob-
lems that have been reported.

• Improve triangulation times slightly when using map projected linescan cameras.

EXAMPLES:

• Added orthoproject, image2qtree, colormap, hillshade examples to MOC.

• Added K10 example dataset.

• Added MER example dataset.

• Added a non-map projected MOC example.

• Added CTX example dataset.

DOCS:

• Append notes from Michael about run times.

VISION WORKBENCH benefits:

• Added threaded writing to colormap and hillshade.
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• Fix hillshade problems with int16 DEMs.

19.20 RELEASE 1.0.3.1, 16 MARCH 2011

Updated documentation and support text files to insure compatibility with our third party software.

19.21 RELEASE 1.0.3, 11 MARCH 2011

ISISIO: Make quaternion interaction compliant with VW changes.

SESSIONS: Correct reading of TSAI camera format.

TOOLS:

• Reduce memory footprint of ISIS_Adjust.

• MOC Example rewritten.

• Improve dash script that loads libraries on startup of application.

VISION WORKBENCH benefits:

• KD-Tree search replace with FLANN, a fast approximate nearest neighbors. This improves speed of ipmatch,
and ip alignment option in stereo.

• Removed exception catch in Bayesian affine sub-pixel.

• Fixed type deduction problem on 32 bit systems.

• Pyramid Correlator code cleaned up. Minimal speed improvement.

• Fixed Camera Relation Network’s memory leak.

• Fix image2qtree normalization and manual geo-positioning.

• Correct random seed call with faster solution.

• Default raster tile size changed to 256.

• Fix deadlocking in loading of “.vwrc”, Vision Workbench’s settings file.

KNOWN ISSUES OSX seems to do excessive locking during multi-threaded rendering. This problem is non-existent
in RHEL5 and is still a mystery.

19.22 RELEASE 1.0.2, 9 DECEMBER 2010

ISISIO:

• IsisCameraModel support operator<< style printing.

• Correct camera pose return to be consistent with VW.

• Change IsisCameraModel to use shared_ptr to block memory leak.

TOOLS:

• Executables should catch VW and Standard errors and print human readable responses.

• Stereo is now a python script that call multiple executables.
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• Change correlation progress bar to track total completion.

• Bundle_Adjust and ISIS_Adjust switch from Euler’s to quaternions.

• Bundlevis dropped CAHVOR support. Added progress bar. Converted statistics with CDFAccumulator.

• Point2dem remove excessive rotation call

• Enforce tile rasterization size to 1024 during integer correlation.

• Select tools should now write their nodata value in the TIFF metadata.

PHOTOMETRYTK Still unreleased, and still under development.

19.23 RELEASE 1.0.1, 24 MAY 2010

CORE:

• Control Network Loader removed and sent to VW’s Bundle Adjustment Module.

• Build system can now use Google PerfTools.

• Kakadu was made optional in build system (ISIS 3.2.x uses this).

ISISIO:

• Optimized IsisCameraModel to use IsisInterface. Custom code can be loaded up for individual camera types
so we don’t have to run through ISIS’s entire camera model. This allows us not to call GroundMap when the
camera is not map projected.

• Added a series of tests for the IsisCameraModel that perform unit tests with MOC and Galileo.

• Added custom project code for Linescan cameras so not to rely on ISIS’s LineScanCameraGroundMap. This
code is a bit more precise.

MPI Added new optional module called MPI that builds on top of Boost MPI. This is experimental development code
and is not used for anything in binary release yet.

PHOTOMETRYTK Added new optional module call the Photometry Toolkit. This is experimental development
code and is not use for anything released in the binary yet. This code focuses on future research of massive
mosaics (+100GB) and the ability to perform basic photometric corrections.

SESSIONS Pinhole session modified to read CMOD files as well.

TOOLS:

• Made orthoproject more robust against odd input georeferences.

• orthoproject’s auto scale and crop works again.

• Point2mesh’s texture is written to a different file.

• Added aligndem and geodiff, experimental DEM alignment utilities.

• Added a quick experimental DEM profile utility called dem_profile.

• stereo now detects correlation settings automatically using OBALoG and SGrad1 interest point functions.

• Added cam2map4stereo.py

• Remove excessive serial number calculations in isis_adjust.

• Update isis_adjust to VW’s new Bundle Adjustment module for a 2x improvement.

• Stereo should now use LZW compression by default.
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• Point2dem and Stereo have added option to use directory other than /tmp for intermediate files.

• Point2dem now uses MOLA datum instead of its previous truncated value.

• Added safety check to stereo to make sure user is not supplying the same camera.

• Added point2las, a utility for converting a point cloud to the LAS format.

TESTS Switched from CXXTests to GTest framework.

19.24 RELEASE 1.0.0, 23 OCTOBER, 2009

CORE:

• OrthoRasterizer.h is subject to change for further VW integration

• MedianFilter.h is untested/unused

• BundleAdjustUtils.* is subject to deletion for integration with ControlNetworkLoader.*

SESSIONS:

• ISIS Session is the only fully supported session at this time

• Pinhole Session works but has not been tested for this release

• Keypoint/RMAX Session status are unknown

SPICEIO Subject to deletion in 1.0.1

TOOLS:

• Point2dem can crash rarely. Still investigating.

• rmax* utilities are not working
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CHAPTER

TWENTY

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute to ASP in many ways:

20.1 Types of Contributions

20.1.1 Report Bugs or Ask for Features via Issues

We want to hear from you! You can report bugs, ask for new features, or just raise issues or concerns via logging an
Issue via our GitHub repo.

20.1.2 Fix Bugs or Implement Features

Look through the GitHub Issues for bugs to fix or features to implement. If anything looks tractable to you, work on
it. Most (if not all) pull requests should be based on an Issue, so if you’re thinking about doing some coding on a topic
that isn’t covered in an Issue, please author one so you can get some feedback while you work on your pull request.

20.1.3 Write Documentation

ASP could always use more documentation, whether as part of the official docs, on the web in blog posts, articles, and
such.

20.1.4 Submit Feedback

The best way to send feedback is to file an Issue.

20.2 Get Started!

Ready to contribute?

You’ll need to follow the instructions for building ASP from source, which can be found in the INSTALLGUIDE.rst
file or the Installation chapter of the documentation.

1. Fork the StereoPipeline repo on GitHub.

2. Clone your fork locally:
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$ git clone git@github.com:your_name_here/StereoPipeline.git

3. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, check that your changes pass a run of make gtest_all (though note that the
unit tests have been broken recently so this won’t work).

5. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

6. Submit a pull request.

20.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Add the feature to the list in NEWS.rst and
potentially update the README.rst or other documentation files.

20.4 What to expect

Our development of ASP is neither continuous, nor as well-funded as we might like, and it is entirely possible that
when you submit a PR (pull request), none of us will have the time to evaluate or integrate your PR. If we don’t, we’ll
try and communicate that with you via the PR.

For large contributions, it is likely that you, or your employer, will be retaining your copyrights, but releasing the
contributions via an open-source license. It must be compatible with the Apache-2 license that ASP is distributed
with, so that we can redistribute that contribution with ASP, give you credit, and make ASP even better! Please contact
us if you have a contribution of that nature, so we can be sure to get all of the details right.

For smaller contributions, where you (or your employer) are not concerned about retaining copyright (but we will give
you credit!), you will need to fill out a Contributor License Agreement (CLA) if we plan to accept your PR. The CLA
assigns your copyright in your contribution to NASA, so that our NASA copyright statement remains true:

Copyright (c) YEAR, United States Government as represented by the Administrator of the National
Aeronautics and Space Administration. All rights reserved.

There is an Individual CLA and a Corporate CLA.
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20.5 ASP People

• An ASP Contributor is any individual creating or commenting on an issue or pull request. Anyone who has
authored a PR that was merged should be listed in the AUTHORS.rst file.

• An ASP Committer is a subset of contributors, typically NASA employees or contractors, who have been given
write access to the repository.
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CHAPTER

TWENTYONE

BUILDING ASP AND ITS DEPENDENCIES WITH CONDA

This page is meant for advanced users of ASP and maintainers who would like to use conda to rebuild ASP and all its
dependencies. It is suggested to carefully read Section 2.3 before this page.

To simplify maintenance, ASP and its dependencies are built upon ISIS and its dependencies. Hence, in order to create
a new conda ASP package, first one needs to create an environment having the latest released ISIS, then rebuild ASP’s
other dependencies and ASP itself, while ensuring that the dependencies of each of these have their versions synced
up with the ISIS dependency versions.

The rebuilt packages will be uploaded to ASP’s anaconda channel.

21.1 Setting up the ISIS environment

Search for the latest available ISIS conda package:

conda search -c usgs-astrogeology --override-channels isis

Here it was found that ISIS version 5.0.1 was the latest, which we will assume throughout the rest of this document.
This needs to be adjusted for your circumstances.

Create a conda environment for this version of ISIS:

conda create -n isis5.0.1 python=3.6
conda activate isis5.0.1

Add these channels to conda:

conda config --env --add channels conda-forge
conda config --env --add channels usgs-astrogeology

Run:

conda config --show channels

and verify that usgs-astrogeology and conda-forge are in this order and above all other channels, except
perhaps the nasa-ames-stereo-pipeline channel.

Install the desired version of ISIS:

conda install isis==5.0.1

Search and install the latest version of the usgscsm package, for example, as:
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conda search -c conda-forge --override-channels usgscsm
conda install -c conda-forge usgscsm==1.5.2

Save the current environment as follows:

conda env export > isis5.0.1.yaml

21.2 Fetching the build tools

We will create a new tools environment to have all the tools we will need. These could be appended to the earlier
environment, but it is less likely to to have issues with dependency conflicts if these are kept separate.

conda create -n tools python=3.6
conda activate tools
conda install -c conda-forge anaconda-client conda-build \

conda-verify cmake git

For Linux, install in addition the needed compilers:

conda install -c conda-forge gcc_linux-64 gxx_linux-64 \
gfortran_linux-64

For OSX, we will use the default system Clang compilers for C, C++, and Fortran, as the conda-provided ones turned
out to have issues in our experiments.

21.3 Fetch the recipes to build

The additional recipes that need to be built can be fetched with git clone from:

https://github.com/NeoGeographyToolkit/geoid-feedstock.git
https://github.com/NeoGeographyToolkit/htdp-feedstock.git
https://github.com/NeoGeographyToolkit/laszip-feedstock.git
https://github.com/NeoGeographyToolkit/fgr-feedstock.git
https://github.com/NeoGeographyToolkit/libnabo-feedstock.git
https://github.com/NeoGeographyToolkit/libpointmatcher-feedstock.git
https://github.com/NeoGeographyToolkit/gdal-feedstock.git
https://github.com/NeoGeographyToolkit/liblas-feedstock.git
https://github.com/NeoGeographyToolkit/imagemagick-feedstock.git
https://github.com/NeoGeographyToolkit/theia-feedstock.git
https://github.com/NeoGeographyToolkit/s2p-feedstock.git
https://github.com/NeoGeographyToolkit/libelas-feedstock.git
https://github.com/NeoGeographyToolkit/visionworkbench-feedstock.git
https://github.com/NeoGeographyToolkit/stereopipeline-feedstock.git

It may be helpful to look at the meta.yml files for the visionworkbench and stereopipeline feedstock repositories,
and install the dependencies of those packages in the isis5.0.1 environment created earier, except for those that we
actually plan to build.
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21.4 Synchronize the versions with the existing environment

For each of these, check the recipe/meta.yaml file and ensure all dependencies are in sync with what is in the file
isis5.0.1.yaml generated earlier. This can be done automatically with a provided script in the ASP repository:

python StereoPipeline/conda/update_versions.py isis5.0.1.yaml \
gdal-feedstock

and the same for the other packages.

It is very important to note that this script is not fool-proof. For example, the eigen version which seems to agree
with the current version of ceres is 3.3.7 rather than 3.3.9.

It is suggested to examine the changed meta.yaml with great care, and if in doubt, leave the values as they were
before modified by this script.

In each of those files manually modify the string isis5.0.1 to reflect the current ISIS version.

In the visionworkbench and stereopipeline recipes update the git_tag value to reflect the desired com-
mit from the Git history. (When making an ASP release, one can tag the commit based on which the release happens
in the VisionWorkbench and StereoPipeline repositories, and then that tag can be used in the git_tag field.)

Later on, after the packages are built and tested, ensure that all the feedstock repositories are committed back.

21.5 Build the conda packages

Each of the packages above can be built as follows:

conda build -c nasa-ames-stereo-pipeline -c usgs-astrogeology \
-c conda-forge gdal-feedstock

and then uploaded to the nasa-ames-stereo-pipeline channel by first logging in, via the command:

anaconda login

and specifying the channel as the user name, and then running a command along the lines:

anaconda upload \
$HOME/miniconda3/envs/tools/conda-bld/linux-64/mypackage.tar.bz2

(Use above the path echoed on the screen by the conda build command.)

Use the --force option if desired to overwrite any existing package with the same name and version.

After a package is uploaded, it can be installed in the existing isis5.0.1 environment as:

conda install -c nasa-ames-stereo-pipeline \
-c usgs-astrogeology \
-c conda-forge \
gdal==isis5.0.1

To list all packages in that channel, do:

conda search -c nasa-ames-stereo-pipeline --override-channels

To delete a package from this channel, run:
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anaconda remove nasa-ames-stereo-pipeline/mypackage

21.6 Order of building the packages

It is suggested to build the above packages in the order listed earlier, as some of them depend on others.

Note that libpointmatcher depends on libnabo, while liblas depends on laszip and gdal, theia de-
pends on imagemagick, and visionworkbench depends on gdal. The stereopipeline package depends
on all of these so it should be built the last.
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CHAPTER

TWENTYTWO

THIRD PARTY LICENSES FOR LIBRARIES IN THE BINARY RELEASE

The NASA Ames Stereo Pipeline (ASP) would not be possible with out the use of third party software that is also
open source. Our binary release may include the following software:

Title License URL
armadillo Apache-2.0 https://gitlab.com/conradsnicta/armadillo-code/-/blob/9.900.x/LICENSE.txt
Boost MIT (modified) https://github.com/boostorg/boost/blob/master/LICENSE_1_0.txt
Bullet Zlib https://github.com/bulletphysics/bullet3/blob/master/LICENSE.txt
CERES Solver BSD-3-clause https://github.com/ceres-solver/ceres-solver/blob/master/LICENSE
CURL MIT (modified) https://curl.se/docs/copyright.html
Embree Apache-2.0 https://github.com/embree/embree/blob/master/LICENSE.txt
Eigen MPL-2.0 http://eigen.tuxfamily.org/index.php?title=Main_Page#License
Fast Global Registration MIT https://github.com/intel-isl/FastGlobalRegistration/blob/master/LICENSE
FLANN BSD-3-clause http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
GDAL MIT https://gdal.org/license.html
GEOS LGPL-2.1 https://trac.osgeo.org/geos/
GFlags BSD-3-clause https://github.com/gflags/gflags/blob/master/COPYING.txt
GLog BSD-3-clause https://github.com/google/glog/blob/master/COPYING
Gmm++ LGPL-2.1 http://getfem.org/gmm.html
GNU Parallel GPL-3.0 https://www.gnu.org/software/parallel/
HDF5 BSD-3-clause https://support.hdfgroup.org/ftp/HDF5/releases/COPYING
HTDP custom https://geodesy.noaa.gov/TOOLS/Htdp/Htdp.shtml
IlmBase BSD-3-clause https://github.com/AcademySoftwareFoundation/openexr/tree/v2.5.5/IlmBase
ImageMagick custom https://github.com/ImageMagick/ImageMagick/blob/master/LICENSE
ISIS public domain https://github.com/USGS-Astrogeology/ISIS3/blob/dev/LICENSE.md
JAMA public domain https://math.nist.gov/tnt/download.html
JHEAD public domain http://www.sentex.net/~mwandel/jhead/
LAPACK BSD-3-clause https://github.com/Reference-LAPACK/lapack/blob/master/LICENSE
LASZIP LGPL-2.1 https://github.com/LASzip/LASzip/blob/master/COPYING
LIBLAS BSD-3-clause https://github.com/libLAS/libLAS/blob/master/LICENSE.txt
LibGeoTIFF combination https://github.com/OSGeo/libgeotiff/blob/master/libgeotiff/LICENSE
LibPNG custom http://www.libpng.org/pub/png/src/libpng-LICENSE.txt
libnabo BSD-3-clause https://github.com/ethz-asl/libnabo/blob/master/README.md
libpointmatcher BSD-3-clause https://github.com/ethz-asl/libpointmatcher/blob/master/README.md
nanoflann BSD-2-clause https://github.com/jlblancoc/nanoflann/blob/master/COPYING
OBALoG BSD-3-clause http://krex.k-state.edu/dspace/handle/2097/3651
OpenCV Apache-2.0 https://github.com/opencv/opencv/blob/master/LICENSE
OpenEXR BSD-3-clause https://github.com/AcademySoftwareFoundation/openexr/blob/master/LICENSE.md
OpenJPEG BSD-2-clause https://github.com/uclouvain/openjpeg/blob/master/LICENSE

continues on next page
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Table 22.1 – continued from previous page
Title License URL
OpenSSL Apache-2.0 https://github.com/openssl/openssl/blob/master/LICENSE.txt
PCL BSD-3-clause https://github.com/PointCloudLibrary/pcl/blob/master/LICENSE.txt
PROJ MIT https://proj.org/about.html#license
Protocol Buffers BSD-3-clause https://github.com/protocolbuffers/protobuf/blob/master/LICENSE
Qt LGPL-3.0 https://www.qt.io/licensing/
Qwt LGPL-2.1 https://qwt.sourceforge.io/qwtlicense.html
SPICE custom https://naif.jpl.nasa.gov/naif/rules.html
SuiteSparse GPL-2.0 https://github.com/DrTimothyAldenDavis/SuiteSparse/blob/master/LICENSE.txt
SuperLU BSD-3-clause https://github.com/xiaoyeli/superlu/blob/master/License.txt
Theia BSD-3-clause https://github.com/sweeneychris/TheiaSfM/blob/master/license.txt
TNT public domain https://math.nist.gov/tnt/download.html
Xerces C Apache-2.0 https://github.com/apache/xerces-c/blob/master/LICENSE
yaml-cpp MIT https://github.com/jbeder/yaml-cpp/blob/master/LICENSE
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CHAPTER

TWENTYFOUR

GLOSSARY

ASP Ames Stereo Pipeline

CTX Context Camera

DEM digital elevation model, synonym for DTM

DTM digital terrain model, synonym for DEM

ET ephemeris time

GCP ground control point

HRSC High Resolution Stereo Camera

HiRISE High Resolution Imaging Science Experiment

IRG Intelligent Robotics Group

ISIS Integrated Software for Imagers and Spectrometers

KML Keyhole Markup Language

LROC Lunar Reconnaissance Orbiter Camera

LRO Lunar Reconnaissance Orbiter

LOLA Lunar Orbiter Laser Altimeter

MER Mars Exploration Rover

MGS Mars Global Surveyor

MOC Mars Orbiter Camera

MOLA Mars Orbiter Laser Altimeter

MRO Mars Reconnaissance Orbiter

MPL Mars Polar Lander

NED National Elevation Dataset

NASA National Aeronautics and Space Administration

PDS Planetary Data System

PVL Parameter Value Language

THEMIS Thermal Emission Imaging System

ULCN Unified Lunar Coordinate Network

USGS United States Geological Survey
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